Effect of Chitin Nanofibres on the Electrochemical and Interfacial Properties of Composite Solid Polymer Electrolytes

Effect of Chitin Nanofibres on the Electrochemical and Interfacial Properties of Composite Solid Polymer Electrolytes

K. Karuppasamy S. Thanikaikarasan S. Balakumar Paitip Thiravetyan D. Eapen P.J.Sebastian X. Sahaya Shajan

Centre for Scientific and Applied Research, PSN College of Engineering and Technology,Tirunelveli-627 152, Tamil Nadu, India

School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi,Bangkok 10150, Thailand

Instituto de Biotecnología-UNAM, Av. Universidad 2001, Cuernavaca, Morelos, 62210, Mexico

Instituto de Energias Renovables-UNAM, 62580, Temixco, Morelos, Mexico

Corresponding Author Email: 
shajan89@gmail.com
Page: 
121-126
|
DOI: 
https://doi.org/10.14447/jnmes.v16i2.31
Received: 
27 August 2012
| |
Accepted: 
18 February 2013
| | Citation
Abstract: 

Chitin nanofibres (CNF) are synthesized from a biopolymer chitin by ultra-pure chemical curing method. The nanocomposite solid polymer electrolytes (CSPE) based on PEO-LiBOB with chitin nanofibres as inert nanofiller are prepared by membrane hot-press method. The polymer membrane obtained is subjected to various electrochemical studies such as impedance analysis, cyclic voltammetry and compatibility studies. The crystalline behavior and structural changes in CSPE are investigated by means of XRD and FT-IR analyzes. The filler incorporated membrane shows better electrochemical properties as compared to filler free membrane. The addition of chitin nanofibre in polymer matrix enhances the ionic conductivity and achieves a maximum of 10-3.8 S/cm. Cyclic voltammetry study is used to know the electrochemical activity of prepared polymer electrolytes at ambient temperature. The compatibility studies reveals that the filler incorporated nanocomposite solid polymer electrolytes reduce the value of interfacial resistance (Ri) and it is better compatible with lith- ium interface.

Keywords: 

chitin nanofiber, ac impedance, cyclic voltammetry, x-ray diffraction

1. Introduction
2. Materials and Methods
3. Results and Discussions
4. Conclusions
5. Acknowledgements
  References

[1] F.M. Gray, “Polymer Electrolytes”, RSC materials monograph, The Royal Society of Chemistry, Cambridge, 1997.

[2] J.R. Mc Callum, C.A. Vincent, “Polymer electrolytes Review- I”, Elsevier, London, 1987.

[3] A.M. Stephan, Eur. Polym. J., 42, 21 (2006).

[4] T. Uma, T. Mahalingam, U. Stimming, Mater. Chem. Phys., 90, 245 (2005).

[5]  J. Adebahr, N. Byrne, M. Forsyth, D.R. MacFarlane, P. Jacobsson, Electrochim. Acta, 48, 2099 (2003).

[6] B. Kumar, L.g. Scanlon, J. Power Sources, 52, 261 (1994).

[7] K. Gopalan Nair, A. Dufresene, Biomacromol., 4, 1835 (2003).

[8] Rujira Dolphen, Paitip Thiravetyan, Chem. Eng. J., 166, 890 (2011).

[9] K. Karuppasamy, S. Thanikaikarasan, R. Antony, S. Balaku-mar, X. Sahaya Shajan, Ionics, DOI: 10.1007/s11581-012- 0678-z.

[10] M. Sukeshini, A. Nishimoto, M. Watanabe, Solid State Ionics, 86, 385 (1996).

[11] W. Wieczoreck, Z. Florjanczyk, JR. Stevens, Solid State Ion- ics, 40, 67 (1996).

[12] W. Wieczoreck, J. Przyuski, Solid State Ionics, 36, 136 (1989). 

[13] A. Manuel Stephan, T. Premkumar, M. Anbu Kulandainathan, N. Angulakshmi, J. Phy. Chem. B, 113, 1963 (2009). 

[14] Mohd Rafie Johan, Leo Bey Fen, Ionics, 16, 335 (2010).

[15] Munichandraiah Nookala, Binod Kumar, Stanley Rodrigues, J. Power Sources,111, 165 (2002).

[16] A. Manuel Stephan, K.S. Nahm, T. Premkumar, M. Anbu Ku- landhainathan, G. Ravi, J. Wilson, J. Power Sources, 159, 1316 (2006).