OPEN ACCESS
The electrocatalyst layers of the oxygen electrode with various Nafion loading for water electrolyzer with polymer electrolyte membrane (PEM-type) were prepared, and the relationship between Nafion loading in the oxygen electrode and the performance of PEM- type water electrolyzer were examined by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and Steady-state gal- vanostatic polarization (GP). It is found that the appropriate Nafion loading in the oxygen electrode (i.e., 0.5 and 1.0 mg/cm2) can increase the electrochemically active area and decrease resistance of electrocatalyst layer. The decrease in working voltage for water electrolyzer with 0.5 and 1.0 mg/cm2 Nafion loading was 0.23 and 0.19 V at a current density of 1A/cm2, compared with that of water electrolyzer with- out Nafion loading (2.25V).
Nafion loading, water electrolysis, oxygen electrode
[1] T.N. Veziroğlu, S.Şahin, Energy Convers Manage, 49, 1820 (2008).
[2] P. Millet, M. Pineri, R. Durand, J. Appl. Electrochem, 19, 162 (1989).
[3] Y. Nishimura, K. Yasuda, Z. Siroma, K. Asaka, Denki Kagaku Oyobi Kogyo Butsuri Kagaku, 65, 123 (1997).
[4] E. Rasten, Ph.D. Thesis NTNU Trondheim, Norway. (2001)
[5] E.A Ticianelli, J.G Berry, S.Srinivasan, J. Appl. Electrochem, 21, 597 (1991).
[6] E. Passalacqua, F. Lufrano, G. Squadrito, A. Patti, L. Giorgi, Electrochim. Acta, 43, 3665 (1998).
[7] S.J. Lee, S. Mukerjee, J. McBreen, Y.W. Rho, Y.T. Kho, T.H. Lee, Electrochim Acta, 43/24, 3693 (1998).
[8] E.A. Ticianelli, C.R. Derouin, A. Redondo, S. Srinivasan, J. Electrochem. Soc,135, 2209 (1988).
[9] Z. Poltarzewskj, P. Staiti, V. Alderucci, W. Wieczarek, N. Giordano, J. Electrochem. Soc, 139, 761 (1992).
[10] V.A. Paganin, E.A. Ticianelli, E.R. Gonzalez, J. Appl. Electrochem, 26, 297 (1996).
[11] T. Ioroi, T. Oku, K. Yasuda, N. Kumagai, Y. Miyazaki, J. Power Sources, 124, 385 (2003).
[12] T. Ioroi, K. Yasuda, Z. Siroma, N. Fujiwara, Y. Miyazaki, J. Power Sources, 112, 583 (2002).
[13] L. Giorgi, A. Pozio, E. Antolini, E. Passalacqua, Electrochim. Acta, 43, 3675 (1988).
[14] E. Antolini, A. Pozio, L. Giorgi, E. Passalacqua, J. Mater. Sci, 33, 1837 (1998).
[15] A. Marshall, B. Børresen, G. Hagen, M. Tsypkin, R. Tunold, Norwegian Hydrogen Seminar, Kvitfjell (2004)
[16] K. Dobelhofer, M. Metikos, Z. Ogumi, H. Gerischer, Ber. Bunsen-ges phy. Chem. 10, 1046 (1978).
[17] B. Aurian-Blajeni, A.G. Kimball, L.S. Robblee, G.L.M.K.S. Kahanda, M. Tomkiewicz, J. Electrochem. Soc, 134, 2637 (1987).
[18] R. Boggio, A. Carugati, S. Trasatti, J. Appl. Electrochem, 17, 828 (1987).
[19] L.A.Da Silva, V.A. Alves, S. Trasatti, J.F.C. Boodts. J. Electroanal. Chem, 427, 97 (1997).
[20] L.A. De Farla, J.F.G. Boodts, S. Trasatti, Electrochim. Acta, 37, 2511 (1992).
[21] S. Ardizzone, A. Carugati, J. Electroanal. Chem,126, 287 (1981).
[22] C.P. De Pauli, S. Trasatti, J. Electroanal. Chem, 396, 161 (1995).
[23] T.A.F. Lassali, J.F.G. Boodts, S. Trasatti, Electrochim.. Acta, 39, 1545 (1994).
[24] K.C. Liu, M.A. Anderson, J. Electrochem. Soc,143, 124 (1996).
[25] L.A. Da Silva, V.A. Alves, M.A.P. Da Silva, S. Trasatti, J.F.C. Boodts, Electrochim. Acta, 42, 271 (1997).
[26] D.T. Shieh, B.J. Hwang, Electrochim Acta, 38, 2239 (1993). [27] I.R. Burrows, D.A. Denton, J.A. Harrison, Electrochim. Acta, 23, 493 (1978).
[28] T.A.F. Lassali, J.F.C. Boodts, L.O.S. Bulhões, Electrochim. Acta, 44, 4203 (1999).
[29] Y.L. Lo, B.J. Hwang, J. Electrochem. Soc, 143, 2158 (1996).
[30] B.J. Hwang, D.T. Shieh, A.S.T. Chang, J. Chin. Inst. Chem. Eng, 25, 127 (1994).
[31] C.M.A. Brett, A.M.O. Brett, Oxford University Press, New York 1993, 245.