Electrochemical Behavior of Ni-based Alloys for Hydrogen Evolution Reaction in Alkaline Media

Electrochemical Behavior of Ni-based Alloys for Hydrogen Evolution Reaction in Alkaline Media

Liliana Vazquez-Nava Karina Patlán-Olmedo Miguel A. Oliver-Tolentino Rosa Gonzalez-Huerta Hector J. Dorantes-Rosales Ariel Guzmán-Vargas Arturo Manzo-Robledo

ESIQIE-IPN, Departamento de Ingeniería Química - Laboratorio de Electroquímica y Corrosión. Edif. Z-5 3er piso, UPALM, Mexico D.F. 07738

UPIBI-IPN, Departamento de Ciencias Básicas. Av. Acueducto s/n, Barrio La Laguna, Col. Ticomán, Mexico, D.F. 07340 ESIQIE-IPN, Departamento de Ingeniería Química-Laboratorio de Investigación en Materiales Porosos, Catálisis Ambiental y Química Fina, Edif. Z-5 3er piso, UPALM, Mexico D.F. 07738,

ESIQIE-IPN, Departamento de Ingeniería en Metalurgia y Materiales. UPALM, UPALM, Mexico D.F. 07738

Corresponding Author Email: 
15 December 2011
10 February 2012
2 April 2012
| Citation

*Nickel-based alloys (Ni0.8CoO0.1Zn0.05MnO0.02Ti0.01Y0.01Al0.01(M1), NiO0.8CoO0.1Zn0.05MnO0.02Ti0.01Y0.01Al0.01 (M2) and NiO0.6CoO0.35Zn0.025Ti0.025 (M3)) were synthesized from high purity powders by means of high-energy mechanical milling. The hydrogen evolution reaction (HER) kinetic-performance of the as-prepared materials was evaluated using linear sweep voltammetry at alkaline conditions and room temperature. According to kinetic parameters calculated from Tafel slopes, the sample M2 showed the better activity in the HER. These results suggest that the electrode surface state in the material play an important role in the proton-adsorption kinetic as demonstrated by SEM, open circuit potential transients and cyclic voltammetry techniques.


Ni-based alloys, hydrogen evolution reaction, mechanical milling, alkaline medium

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusion

Project ICyTDF-PICS08-29 for financial support. CONACyT (160333 and 130254) and IPN (projects 20120499 and 13138) institutions. AM-R thanks Dr. Karina Suárez-Alcántara.


[1] T. Sakai, T. Hazama, H. Miyamura, N. Kuriyama, A. Kato, H. Ishikawa, J. Less-Common Met., 172, 1175 (1991).

[2] F. Feng, D.O. Northwood, Surf. Coatings Tech., 167, 263 (2003).

[3] C. Iwakura, M. Matsuoka, K. Asai, T. Kohno, J. Power Sources, 38, 335 (1992).

[4] M. Matsuoka, K. Asai, Y. Fukumoto, C. Iwakura, J. Alloys Comp., 192, 149 (1993).

[5] C. Iwakura, Y. Fukumoto, M. Matsuoka, T. Kohno, K. Shinmou, J. Alloys Comp., 192, 152 (1993).

[6] H. Kronberger, Int. J. Hydrogen Energy, 21, 577 (1996).

[7] M. Metikos-Hukovic, Z. Grubac, N. Radic, A. Tonejc, J. Mol. Catal. A-Chem., 249, 172 (2006).

[8] Królikowski, E. Plonska, A. Ostrowski, M. Donten, Z. Stojek, J. Solid State Electrochem. 13, 263 (2009).

[9] N.V. Krstajic, V.D. Jovic, Lj. Gajic-Krstajic, B.M. Jovic, A.L. Antozzi, G.N. Martelli, Int. J. Hydrogen Energy 33, 3676 (2008).

[10] M.A. Oliver-Tolentino, E.M. Arce-Estrada, C.A. Cortés-Escobedo, A.M. Bolarín-Miro, F. Sánchez-De Jesús, R. de G. González-Huerta, A. Manzo-Robledo, J. Alloys Comp., In press.

[11] H. Chi-Chang, C. Chen-Yi, J. Power Sources, 111, 137 (2002).

[12] K. Lian, D.W. Kirk, S. Thorpe, Electrochim. Acta, 36, 537 (1991).

[13] F. Rosalbino, S. Delsante, G. Borzone, E. Angeline, J. Alloys Comp., 429, 270 (2007).

[14] J.M. Jaksic, D. Labou, C.M. Lacnjevac, A. Siokou, M.M. Jaksic. Applied Catalysis A: General. 380, 1 (2010).