Effect of WOx Over Ni/Hydrotalcite Catalysts to Produce Hydrogen from Ethanol

Effect of WOx Over Ni/Hydrotalcite Catalysts to Produce Hydrogen from Ethanol

J.L. ContrerasM.A. Ortiz G.A. Fuentes M. Ortega R. Luna M. Gordon J. Salmones B. Zeifert L. Nuño T. Vázquez 

Depto. de Energía, CBI, Universidad Autónoma Metropolitana-Azcapotzalco, Av. Sn. Pablo 180 Col. Reynosa, Azcapotzalco C.P.02200 México D.F.

Depto. de IPH, CBI, Universidad Autónoma Metropolitana-Iztapalapa, México, D.F.

Centro de Nanotecnologia del IPN, UPALM, Zacatenco, México, D.F.

ESIQIE, Instituto Politécnico Nacional, Unidad Prof. UPALM, México, D. F., 07738

Corresponding Author Email: 
27 November 2011
10 February 2012
4 April 2012
| Citation

The effect of WOx over Ni-hydrotalcite catalysts to produce H2by ethanol steam reforming was studied. The catalysts were characterized by N2 physisorption (BET area), X-ray diffraction, Infrared and UV-vis spectroscopies. The W concentration ranged from 0.5 to 3 wt%. As W concentration increased, the intensity of XRD reflections of the Ni catalysts decreased. The porous structure of the materials consisted of parallel layers with a monomodal mesoporous distribution. The surface groups detected by IR were: -OH, Al-OH, Mg-OH, W=O and CO32-. UV-vis results suggested that Ni2+ ions were substituted by W ions. The catalytic evaluations were made in a fixed bed reactor using a water/ethanol mol ratio of 4 at 450°C. Catalysts with low loadings of W (0.5 and 1%) showed the highest H2production and stability. W promoted the conversion of ethanol towards hydrogen in the case of the Ni-hydrotalcite catalysts. The reaction products were; H2, CO2, CH3CHO, CH4 and C2H4. The catalysts did not produce CO.


Hydrogen, Ni, WOx, Hydrotalcite, Ethanol

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions

The authors acknowledge the financial support of the Universi-dad Autónoma Metropolitana-Azcapotzalco and UAM-Iztapalapa and the Instituto Politécnico Nacional of México.


[1] R.D. Cortright, R.R. Davda, J.A. Dumesic, Nature, 418, 964 (2002).

[2] J. Llorca, N. Homs, J. Sales, J.L.G. Fierro and P. Ramírez de la Piscina, J. Catal., 222, 470 (2004).

[3] A. Aboudheir, A. Akande, R. Idem, A. Dalai, Int. J. of Hydro-gen Energy, 31,752 (2006).

[4] Kurt Koelling, Fuel Cell Grade Hydrogen Production from the Steam Reforming of Bio-Ethanol Over Co-based catalysts: An Investigation of Reaction Networks and Active Sites. Ph.D. Thesis, The Ohio State University, (2005).

[5] M.A. Ortiz R., Hydrogen from bio-ethanol using Co, Ni and Pt hydrotalcites, stabilizated with WOx, Chem. Eng. Thesis, UAM-Azcapotzalco, México (2009).

[6] M. de los Ángeles Ocaña Z. Síntesis de Hidrotalcitas y Materia-les Derivados: Aplicaciones en Catálisis Básica. Tesis de Doc-torado, Universidad Complutense de Madrid. (2005).

[7] H. Liandro Reza G., Síntesis y caracterización fisicoquímica de catalizadores sólidos básicos tipo hidrotalcita de cobalto y níquel. Tesis de licenciatura, Universidad Autónoma Metro-politana, Unidad Azcapotzalco (2003).

[8] F. Cavani, F. Trifiro, A. Vacari, Catal. Today, 11, 173 (1991).

[9] J.L .Contreras, G.A. Fuentes, J. Salmones, B. Zeifert, J. of Al-loys and Compounds, 483, 371 (2008).

[10]J.L.Contreras, J. Salmones, L.A. García, A. Ponce, B. Zeifert and G.A. Fuentes, J. of New Materials for Electrochemical Systems, 11, 109 (2008).

[11]M.N. Barroso, M.F. Gómez, L.A. Arrúa, M.C. Abello, Appl. Catal. A:General, 304, 116 (2006).

[12]J. Llorca, N. Homs, J. Sales, and P. Ramírez de la Piscina, J. Catal., 209, 306 (2002).

[13]K. Sing, D. Everett, R. Haul, L. Moscou, R. Pierotti, J. Rou-querol, and T. Siemieniewska, Pure Appl. Chem. 57, 603 (1985).

[14]L. D. Gelb, K.E. Gubbins, R. Radhakrishnan, and M. Sliwin-ska-Bartkowiak, Reports on Progress in Physics, 62, 1573 (1999).

[15]S. Lowell, J.E. Shields, M.A. Thomas, and M. Thommes, Characterization of Porous Solid and Powders: Surface Area, Pore Size and Density, Kluwer Academic Publishers, 2004.

[16]M. del Arco, D. Carriazo, S. Gutiérrez, C. Martín and V. Rives, Inorg. Chem., 43, 375 (2004).

[17]F. Basile, G. Fornasari, M. Gazzano, A. Vaccari, Appl. Clay. Sci., 16, 185 (2000).

[18]A.C.C. Rodríguez,C.A. Enríquez, J.L.F. Monteiro, Mater. Res., 6, 563 (2003).

[19]T. Shishido, M. Sukenobu, H. Morioka, R. Furukawa, H.l Shirahase, K. Takehira, Catal. Lett., 73, 21 (2001).

[20]María de los Ángeles Ocaña Zarceño, Síntesis de Hidrotalcitas y Materiales Derivados: Aplicaciones en Catálisis Básica. Tesis de Doctorado, Universidad Complutense de Madrid (2005).

[21]C. Resini, T. Montenari, L. Barattini, G. Ramis, G. Busca, S. Presto, P. Riani, R. Marazza, M. Sisani, F. Marmottini, U. Co-stantino, Appl. Catal.A: General, 355, 83 (2009).

[22]A. Bartecki and D. Dembicka, J. of Inorg. and Nuclear Chem., V.29, I.12, 2907 (1967).

[23]J.L. Contreras and G.A. Fuentes, Studies in Surface Science and Catalysis, Vol. 101 Edit. B. Delmon and J.T. Yates, El-sevier 1195 (1996).

[24]A. Iannibello, L. Villa, and S. Marengo, Gazzetta Chimica Italiana, 109, 521 (1979).

[25]L. Salvati, L.E. Makovsky, J.M. Stencel, F.R. Brown, D.M. Hercules, J. Phys.Chem., 85, 3700 (1981).

[26]J.A. Horsley, I.E. Wach, JÑ. M. Brown, G.H. Via, F.D. Hard-castle, J. Phys. Chem., 91, 15, 4014 (1987).

[27]W.P. Griffith and T.D. Wickins, J. Chem. Soc. A., 1087 (1966).

[28]S. Damyanova, B. Pawelec, K. Arishtirova, J.L.G. Fierro, In-ternational Journal of Hydrogen Energy, 3610635, 10647 (2011).

[29]J. Llorca, N. Homs, P. Ramírez de la Piscina, J. of Catal., 227, 556 (2004).

[30]J.R. Rostrup-Nielsen, N. Hojlund in: J. Oudar, H. Wise (Eds.), Deactivation and Poisoning of Catalyst, Marcel Dekker, New York, Basel, p.57 (1985).

[31]J. Comas, F. Mariño, M. Laborde, N. Amadeo. Chem Eng. J. 98, 61 (2004).

[32]A. Erdohelyi, J. Rasko, T. Kecskes, M. Toth, M. Dömök, K. Baán, Catal. Today, 116, 367 (2006).

[33]J.L. Contreras, M.A. Ortiz, G.A. Fuentes, R. Luna, J. Sal-mones, B. Zeifert, L. Nuño and A.Vázquez, J. of New Materi-als for Electrochemical Systems, 13, 253 (2010).

[34]L. Liu, D. Chen, K. Zhang, J. Li, N. Shao, Int. J. of Hydrogen Energy, 33, 3736 (2008).

[35]L.J.I. Coleman, W. Epling, R.R. Hudgins, E. Croiset, Appl. Catal., A: General, 363, 52 (2009).

[36]L. He, H. Berntsen, De Chen, J. of Phys. Chem., A, Vol. 114, 3834 (2010).

[37]A.F. Lucrédio, J.D. A.Bellido, E.M. Assaf, Appl. Catal. A: General, 388, 77 (2010).

[38]G. Zeng, Q. Liu, R. Gu, L. Zhang, Y. Li, Catal. Today, 178, 206 (2011).

[39]R. Guil-López, R.M. Navarro, M.A. Peña, J.L.G. Fierro, Int. J. of Hydrogen Energy, 36, 1512 (2011).