Graphene-Polythiophene Nanocomposite as Novel Supercapacitor Electrode Material

Graphene-Polythiophene Nanocomposite as Novel Supercapacitor Electrode Material

Farah Alvi Punya A. Basnayaka Manoj K. Ram Humberto Gomez Elias Stefanako Yogi Goswami Ashok Kumar 

Department of Electrical Engineering, University of South Florida, 4202 E Fowler Avenue, ENB 118, Tampa, FL, 33620

Department of Mechanical Engineering, University of South Florida, 4202 E Fowler Avenue, ENB 118, Tampa, FL, 33620

Nanotechnology Education and Research Center, University of South Florida, 4202 E Fowler Avenue, ENB 118, Tampa, FL, 33620

Chemical & Biomedical Engineering Department, University of South Florida, 4202 E Fowler Avenue, ENB 118, Tampa, FL, 33620

17 June 2011
16 November 2011
22 December 2011
| Citation

The graphene (G)-polythiophene (PTh) nanocomposite was synthesized by a chemical oxidative polymerization technique and characterized using Field Emission Scanning Electron Microscopy (FESEM), High-Resolution Transmission Electron Microscopy (HRTEM), Raman Spectroscopy, Fourier transform Infrared spectroscopy (FTIR), X-ray-diffraction (XRD), Electrochemical Impedance spectroscopy(EIS) and cyclic voltammetry (CV) techniques. The electrochemical properties of G-PTh nanocomposite supercapacitor electrodes were investigated in different electrolytes solutions and a specific discharge capacitance of 154 F/g was estimated from different charge/discharge current cycles. Our proposed research is transformative as the G-conducting polymer based electrode material with unique and excellent properties, such as, high conductivity, wider tunable potential window, high stability of the electrode material in doped form, faster charge transfer rate, and short charging times, that allows the fabrication of high performance supercapacitors for practical applications.


graphene, polythiophene, nanocomposite, capacitance, supercapacitor, charging-discharging, conducting polymer, G-PTh, cyclic voltammetry.

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions

This research was supported by the NSF grant # 0728100 and also partially supported by the NSF grant # 070734232.


[1] E. Beaudrouet, A.L.G.L. Salle and D. Guyomard, Electrochimica Acta, 54, 1240 (2009).

[2] K.H. An, W.S. Kim, Y.Y.S. Park, J.M. Moon, D.J. Bae, S.C. Lim, Y.S. Lee and Y.H. Lee, Advanced Functional Materials, 11, 387 (2001).

[3] R.H. Baughman, A.A. Zakhidov and W.A.D. Heer, Science, 297, 787 (2002).

[4] R. Liu, S. Cho and S.B. Lee, Nanotechnology, 19, 1 (2008).

[5] M.W. Mehrens, J. Schenk, P.M. Wilde, E. Abdelmula, P. Axmann, J. Garche, Journal of Power Sources, 105, 182 (2002).

[6] F.E. Amitha, A.L.M. Reddy and S. Ramaprabhu, Journal of Nanoparticles, 11, 725 (2009).

[7] R.E. Metallurgiche, U.C.D. Istituti, S. Chimiche, Solid State Ionics, 148, 493 (2002).

[8] A.I. Najafabadi, S. Yasuda, K. Kobashi, T. Yamada, D.N. Futaba, H. Hatori, M. Yumura, S. Iijima, and K. Hata, Advanced Energy Materials, 22, 235 (2010).

[9] J.P. Ferraris, M.M. Eissa, I.D. Brotherston and D.C. Loveday, Chemistry of Materials, 10, 3528 (1998).

[10] B.E. Conway and W.G. Pell, Journal of Solid State Electrochemistry,7, 637 (2003).

[11] A. Janes, H. Kurig and E. Lust, Carbon, 45, 1226 (2007).

[12] E. Frackowiak and F. Beguin, Carbon, 39, 937 (2001).

[13] H. Pan, J. Li and Y.P. Feng, Nanoscale Research Letters, 5, 654 (2010).

[14] A.L.M. Reddy and S. Ramaprabhu, Journal of Physical Chemistry, 11, 7727 (2007)

[15] C.C. Hu, K.H. Chang, M.C. Lin and Y.T. Wu, Nano Letters, 6, 2690 (2006).

[16] B. Muthulakshmi, D. Kalpana, S. Pitchumani and N.G. Renganathan, Journal of Power Sources, 158, 1533 (2006).

[17] V. Gupta and N. Miura, Materials Letters, 60, 1466 (2006).

[18] K.S. Ryu, Y.G. Lee, Y.S. Hong, Y.J. Park, X. Wu, K.M. Kim, M.G. Kang, N.G. Park, S.H. Chang, Electrochimica Acta, 50, 843 (2004).

[19] M. Hughes, G.Z. Chen, M.S.P. Shaffer, D.J. Fray and A.H. Windle, Chemistry of Materials, 14, 1610 (2002).

[20] C. Zhou, S. Kumar, C.D. Doyle and J.M. Tour, Chemistry of Materials, 17, 1997 (2005).

[21] H. Wang, Q. Hao, X. Yang, L. Lu and X. Wang, Nanoscale, 2, 2164 (2010).

[22] B.O. Park, C.D. Lokhande, H.S. Park, K.D. Junga O.S. Joo, Journal of Power Sources, 134, 148 (2004).

[23] A.D. Marani, A.A. Entezami, Iranian Journal of Polymer Science and Technology, 3, 2 (1994).

[24] A. Laforgue, P. Simon, C. Sarrazin, J.F. Fauvarque, Journal of Power Sources, 80, 142 (1999).

[25] S.R.P. Gnanakan, N. Murugananthem and A. Subramania, Polymer Advanced Technologies, 2009.

[26] S.R.C. Vivekchand, C.S. Rout, K.S. Subrahmanyam, A. Govindaraj and C.N.R. Rao, Journal of Chemical Scicience, 120, 9 (2008).

[27] Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen and Y. Chen, Jornal of Physical Chemistry C, 113, 13103 (2009).

[28] M.D. Stoller, S. Park, Y. Zhu, J. An and R.S. Ruoff, Nano Letters, 8, 3498 (2008).

[29] C. Liu, Z. Yu, D. Neff, A. Zhamu, and B.Z. Jang, Nano Letters, 10, 4863 (2010).

[30] H. Gomez, M.K. Ram, F. Alvi, P. Villalba, L. Stefanakos, A. Kumar, Journal of Power Sources, 196, 4102 (2011).

[31] F. Alvi, M. K. Ram, Punya A. Basnayaka, E. Stefanakos Y.Goswami, A. Kumar, Electrochimica Acta, 56, 9406 (2011).

[32] S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, D. Piner, S.T. Nguyen and R.S. Ruoff, Nature letters, 442, 282 (2006).

[33] G. Shi, J. Xu and M. Fu, Journal of Physical Cheistry B, 106, 288 (2001).

[34] H.S. Nalwa, “Handbook of advanced electronic and photonic materials and devices,” vol. 2, 2001.

[35] Z.Q. Li, C.J. Lu, Z.P. Xia, Y. Zhou, Z. Luo, Carbon, 45, 1686 (2007).