Electrosynthesis and Studies on CdZnSe Thin Films

Electrosynthesis and Studies on CdZnSe Thin Films

T. MahalingamV. Dhanasekaran S. Rajendran R. Chandramohan Luis Ixtlilco P. J. Sebastian 

Department of Physics, Alagappa University, Karaikudi - 630 003

Universidad Politécnica del Estado de Guerrero, Carretera Taxco-Iguala, Ejido de Arroyo s/n, CP. 40290, Taxco, Guerrero

Solar-Hydrogen-Fuel Cell Group, CIE-UNAM, Temixco 62580, Morelos

Corresponding Author Email: 
maha51@rediffmail.com
Page: 
37-42
|
DOI: 
https://doi.org/10.14447/jnmes.v15i1.86
Received: 
11 June 2011
| |
Accepted: 
8 October 2011
| | Citation
Abstract: 

Electrodeposited CdZnSe thin films have been prepared at various bath temperatures. The thickness of the films was estimated between 850 nm and 1500 nm by stylus method. The X-ray diffraction patterns revealed that the polycrystalline nature with cubic structure of CdZnSe alloy thin films. Microstructural properties such as, crystallite size, dislocation density, microstrain and number of crystallites per unit area were calculated using predominant orientation of the films. SEM images revealed that the surface morphology could be tailored suitably by adjusting the pH value during deposition.  The surface roughness of the film was estimated using topographical studies. Optical properties of the film were analyzed from absorption and transmittance studies. Optical band gap of the films increased from 1.67 to 1.72 eV with the increase of bath temperature from 30 to 90℃. The optical constants (refractive index (n) and extinction coefficient (k)) of CdZnSe thin films were evaluated using optical studies.

Keywords: 

CdZnSe, Electrodeposition, thin films, optical properties

1. Introduction
2. Experimental Details
3. Results and Discussion
4. Conclusions
  References

[1] T. Yamaguchi, Y. Yamamoto, T. Tanaka, A. Yoshida, Thin Solid Films, 343, 516 (1999).

[2] G. Laukaitis, S. Lindroos, S. Tamulevic¡ius, M. Leskela, M. Rac¡kaitis, Appl. Surf. Sci., 161, 396 (2000).

[3] S.D. Chavhan, S.V. Bagul, R.R. Ahire, N.G. Deshpande, A.A. Sagade, Y.G. Gudage, R. Sharma, J. Alloys & Compounds, 436, 400 (2007).

[4] K.R. Murali, M. Balasubramanian, Curr. Appl. Phys., 10, 734 (2010).

[5] G.H. Schoemaker, E.P.A.M. Bakkers, J.J. Kelly, J. Electrochem. Soc., 144, 2329 (1997).

[6] K. Singh, R.K. Pathak, Electrochim. Acta, 39, 2693 (1994).

[7] S. Licht, Electrochem. Soc. (Interface), 6, 37 (1993).

[8] T. Yoshida, J. Electrochem. Soc., 142, 3232 (1995).

[9] P.S. Nair, K.P. Fritz, G.D. Scholes, Chem. Commun., 2084 (2004).

[10] R.B. Kale, C.D. Lokhande, R.S. Mane, S.H. Han, Appl. Surf. Sci., 253, 3109 (2007).

[11] S.D. Chavhan, R.S. Mane, T. Ganesh, W. Lee, S.-H. Han, S. Senthilarasu S.-H. Lee, J Alloys Compounds, 474, 210 (2009).

[12] V. Kishore, V.K. Saraswat, N.S. Saxsena, T.P. Sharma, Bull. Mater. Sci., 28, 431 (2005).

[13] B. Schreder, T. K¨ ummell, G. Bacher, A. Forchel, G. Landwehr, A. Materny W. Kiefer, J. Cryst. Growth, 214/215, 787 (2000).

[14] C. Trager-Cowan, D.M. Bagnall, F. McGow, W. McCallum, K.P. O’Donnell P.C. Smith, P.J. Wright, B. Cockayne, K.A. Prior, J.T. Mullins, G. Horsburgh B.C. Cavenett, J. Cryst. Growth, 159, 618 (1996).

[15] P.P. Hankare, P.A. Chate, M.R. Asabe, S.D. Delekar, I.S. Mulla, K.M. Garadkar, J. Mater. Sci.: Mater. Electron., 17, 1055 (2006).

[16] D.S. Sutrave, G.S. Shahane, V.B. Patil, L.P. Deshmukh, Mater. Chem. Phys., 65, 298 (2000).

[17] JCPDS card no. 89-4174

[18] C. Vijayan, M. Pandiaraman, N. Soundararajan, R. Chandramohan, V. Dhanasekaran, K. Sundaram, T. Mahalingam, A. John Peter, J. Mater. Sci.: Mater. Electron (DOI 10.1007/s10854-010-0175-y)

[19] R. Swanepoel, J. Phys. E, 16, 1214 (1983).

[20] R. Swanepoel, J. Phys. E, 17, 896 (1984).

[21] T. Mahalingam, V. Dhanasekaran, G. Ravi, Soonil Lee, J. P. Chu, Han-Jo Lim, J. Optoelectron. Adv. Mater., 12, 1327 ( 2010).

[22] J. I. Pankove, “Optical Processes in Semiconductors”, Dover Publications Inc., New York, p- 91.

[23] .E.R. Shaaban, I. Kansal, S.H. Mohamed, J.M.F. Ferreira, Physica B, 404, 3571 (2009).