Electrochemical Activation of Metal Hydride Alloy by Inclusion of Nickel and Palladium Nanoparticles

Electrochemical Activation of Metal Hydride Alloy by Inclusion of Nickel and Palladium Nanoparticles

M. A. RiveraS. A. Gamboa P. J. Sebastian

Universidad Politécnica del Estado de Guerrero, Carretera Taxco-Iguala, Ejido de Arroyo s/n, CP. 40290, Taxco Guerrero

Departamento de Materiales Solares, Centro de Investigación en Energía, Universidad Nacional Autónoma de México, Xochicalco S/N, Centro, 62580, Temixco, Morelos

10 July 2011
18 October 2011
6 December 2011
| Citation

Nickel and palladium nanoparticles were obtained by colloidal dispersion. Chemical reduction was used to obtain good quality nanoparticles showing electrocatalytic characteristics for improving the electrochemical hydrogen content in typical metal hydride at the initial stage of absorption process. The particle size and distribution of the colloidal nanoparticles were calculated by analyzing TEM images. The colloidal nanoparticles obtained were impregnated onto LaNi5-xMx type metal hydride alloy via catalytic dipping. The impregnated metal hydride alloy was characterized by SEM, AFM and EDS to obtain quasi-quantitative measurements of the position and concentration of the agglomerated colloidal nanoparticles forming nano-clusters onto de surface of the metal hydride alloy. Electrochemical characterization showed the enhancement of absorbed hydrogen content in the metal hydride due to the presence of agglomerated nanoparticles and the localized catalytic activity of Pd more than that of Ni nano-clusters. 


nanoparticles, metal hydride electrode, hydrogen absorption, Nanostructured Pd, nanostructured Ni

1. Introduction
2. Experimental Details
3. Results and Discussion
4. Conclusions

This work was carried out as part of the projects CONACYT 100212 and DGAPA-UNAM IN103410.


[1] J.H. Fendler, “Nanoparticles and Nanostructured Films: Preparation, Characterization and Applications”, ed., Wiley-VCH, Weinhein/New York, USA, 1998.

[2] G. Schmid, Clusters and Colloids: From Theory to Application, VCH, Weinheim, Germany, 1994.

[3] P.V. Kamat, Chem. Rev., 93, 267 (1993).

[4] B. C. Gates, Chem. Rev., 95, 511 (1995).

[5] R.W.J. Scott, M.J. MacLachlan, G.A. Ozin, Curr. Opin. Solid State Mat. Sci., 4, 113 (1999).

[6] R. Schuster, V. Kirchner, P. Allongue, G. Ertl, Science, 289, 98 (2000).

[7] T. Delwing, G. Rupprechter, H. Unterhalt, H.J. Freund, Phys. Rev. Lett., 85, 776 (2000).

[8] M. Brust, M. Walker, D. Bethell, D.J. Schiffrin, R. Whyman, J. Chem. Soc.: Chem. Commun., 801, (1994).

[9] U. Köhler, J. Kümper, M.J. Ullrich, J. Power Sources, 105, 139 (2002).

[10] Y. Liaw, X.G. Yang, Solid State Ionics, 152, 217 (2002).

[11] X.P. Gao, Y. Wang, Z.W. Lu, W.K. Hu, F. Wu, D.Y. Song, P.W. Shen, Chem. Mater., 16, 2515 (2004).

[12] X.P. Gao, Z.W. Lu, Y. Wang, F. Wu, D.Y. Song, P.W. Shen, Electrochem. Solid State Lett., 7, A102 (2004).

[13] Xuedong Wei, Rui Tang,Yongning Liu, Peng Zhang, GuangYu, Jiewu Zhu, International Journal of Hydrogen Energy, 31, 1365 (2006).

[14] J. Chem, S.L. Li, Z.L. Tao, Y.T. Shen, C.X. Cui, J. Am. Chem Soc., 125, 5284 (2003).

[15] Xianjuan Fu, Haiyan Zhang, Yiming Chen, Shunhau Li, Shuangping Yi, Chun Zhou, Minghua Li, Yanjuna Zhu, Jin Chen, Physica E, 25, 414 (2005).

[16] Shuangping Yi, Haiyan Zhang, Lei Pei, Yanjuan Zhu, Xiaoling Chen, Xinming Xue, Journal of Alloys and Compounds, 420, 312 (2006).

[17] Z.W. Lu, S.M. Yao, G.R. Li, J.Q. Qu, X.P. Gao, Journal of Alloys and Compounds, 463, 378 (2008).

[18] A. Reyhani, S.Z. Mortazavi, A.Z. Moshfegha, A. Nozad Golikand, M. Amiri, Journal of Power Sources, 188, 404 (2009).

[19] R.G. Gao, J.P. Tu, X.L. Wang, X.B. Zhang, C.P. Chen, Journal of alloys and Compounds, 356-357, 649 (2003).

[20] Huaiyu Shao, Yunao Wang, Hairuo Xu, Xingguo Li, Journal of Solid State Chemistry, 178, 2211 (2005).

[21] S.R. Chung, K.W. Wang, M.H. Teng, T.P. Perng, International Journal of hydrogen energy, 34, 1383 (2009).

[22] M.V.C.Sastri, B.Viswanathan, S.Srinivasa Murthy, Metal Hydrides- Fundamentals and Applications, Narosa Publishing House, New Delhi, India, 1998.

[23] C. Iwakura, Y. Kajiya, H. Yoneyama, T. Sakai, K. Oguro, H. Ishikawa, J. Electrochem Soc., 136, 1351 (1989).

[24] M. Raju, M.V. Ananth, L. Vijayaraghavan, Journal of Alloys and Compounds, 475, 664 (2009).

[25] Xianjiu Zhao, Qian Li, Kuochih Chou, Hui Liu, Genwen Lin, Journal of Alloys and Compounds, 473, 428 (2009).

[26] Yanzhi Wang, Minshou Zhao, Limin Wang, International Journal of hydrogen energy, 34, 2646 (2009).

[27] S.A. Gamboa, P.J. Sebastian, Int. J. Hydrogen Energy, 26, 117 (2001).

[28] U. Pal, J.F. Sánchez-Ramírez, S.A. Gamboa, P.J. Sebastian, R. Pérez, Physic Status Solid (c), 0, 2944 (2003).

[29] M.A. Rivera, U. Pal, Xianyou Wang, J.G. Gonzalez-Rodriguez, S.A. Gamboa, Journal of Power Sources, 155, 470 (2006).