Hydrolysis Precipitation-assisted Solid-state Reaction to Li4Ti5O12 and its Electrochemical Properties

Hydrolysis Precipitation-assisted Solid-state Reaction to Li4Ti5O12 and its Electrochemical Properties

Jie Xu Chunju LvGuanglei Tian 

College of Materials and Engineering, China Jiliang University, Hangzhou

Corresponding Author Email: 
lvchunju@cjlu.edu.cn
Page: 
5-10
|
DOI: 
https://doi.org/10.14447/jnmes.v15i1.81
Received: 
28 June 2011
|
Accepted: 
13 September 2011
|
Published: 
13 October 2011
| Citation
Abstract: 

Spinel lithium titanate (Li4Ti5O12) materials were synthesized by a hydrolysis precipitation-assisted solid-state method in the temperature range from 600 to 900℃ for large-scale production. DSC/TGA, XRD and SEM were used to characterize the as-prepared samples. The optimum synthesis condition was examined in relation to the charge–discharge performance. It was found that when the dry hydrolysis precipitation precursor with 8% Li excess was calcined at 700–800℃ for 12 h in air, a pure Li4Ti5O12 phase was obtained. The as-obtained material has the best electrochemical performance due to its narrow size distribution and precise stoichiometry of the oxide.

Keywords: 

lithium-ion battery, electrochemical performance, Li4Ti5O12

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusion
Acknowledgements

This work was financially supported by the Zhejiang Analysis Test Project of China (2009F70010).

  References

[1] T. Ohzuku, A. Ueda, and N. Yamamoto, J. Electrochem. Soc., 142, 1431(1995).

[2] K.M. Colbow, J.R. Dahn, and R.R. Haering, J. Power Sources, 26, 397 (1989).

[3] E. Ferg, R.J. Gummov, A. de Kock, and M.M. Thacheray, J. Electrochem. Soc., 141, L147 (1994).

[4] K. Zaghib, M. Dontigny, A. Guerfi, P. Charest, I. Rodrigues, A. Mauger, and C.M. Julien, J. Power Sources, 196, 3949(2011).

[5] K. Ariyoshi, S. Yamamoto, and T. Ohzuku, J. Power Sources, 119–121, 959 (2003).

[6] D. Peramunage, and K.M. Abraham, J. Electrochem. Soc., 145, 2609 (1998).

[7] A.D Pasquier, and C.C. Huang, J. Power Sources, 186, 508 (2009).

[8] C.M. Ionica-Bousquet, D. Muñoz-Rojas, W.J. Casteel, R.M. Pearlstein, G. GirishKumar, G.P. Pez, and M.R. Palacín, J. Power Sources, 195, 1479 (2010).

[9] G.G. Amatucci, F. Badway, A. Du Pasquier, and T. Zheng, J. Electrochem. Soc., 148, A930 (2001).

[10] L. Kavan, J. Procházka, T.M. Spitler, M. Kalbá, M. Zukalová, T. Drezen, and M. Grätzel, J. Electrochem. Soc., 150, A1000 (2003).

[11] W.J.H. Borghols, M. Wagemaker, U. Lafont, E.M. Kelder, and F.M. Mulder, J. Am. Chem. Soc., 131, 17786 (2009).

[12] A.S. Arico, P. Bruce, B. Scrosati, J.M. Tarascon, and W. Van Schalkwijk, Nat. Mater., 4, 366 (2005).

[13] B.J. Hwang, R. Santhanam, and D.G. Liu, J. Power Sources, 97–98, 443 (2001).

[14] K. Kanamura, T. Chiba, and K. Dokko, J. Eur. Ceram. Soc., 26, 577 (2006).

[15] D. Yoshikawa, Y. Kadoma, J.M Kim, K. Ui, N. Kumagai, N. Kitamura, and Y. Idemoto, Electrochim. Acta, 55, 1872 (2010).

[16] Y.F. Tang, L. Yang , Z. Qiu, and J.S. Huang, Electrochem. Commun., 10, 1513 (2008).

[17] J. Li, Z. Tang, and Z. Zhang, Electrochem. Commun., 7, 894 (2005).

[18] C. Lai, Y.Y. Dou, X. Li, and X.P. Gao, J. Power Sources, 195, 3676 (2010).

[19] S. Bach, J.P. Pereira-Ramos, and N. Baffier, J. Power Sources, 81–82, 273 (1999).

[20] Y.H. Rho, K. Kanamura, M. Fujisaki, J. Hamagami, S. Suda, and T. Umegaki, Solid State Ionics, 151, 151 (2002).

[21] C.M. Shen, X.G. Zhang, Y.K. Zhou, and H.L. Li, Mater. Chem. Phys., 78, 437 (2002).

[22] Y. J. Hao, Q. Y. Lai, Z. H. Xu, and X.Y. Ji, Solid State Ionics, 176, 1201 (2005).

[23] C.H. Jiang, Y. Zhou, I. Honma, T. Kudo, and H.S. Zhou, J. Power Sources, 166, 514 (2007).

[24] M. Venkateswarlu, C.H. Chen, J.S. Do, C.W. Lin, T.C. Chou, and B.J. Hwang, J. Power Sources, 146, 204 (2005).

[25] N.A. Alias, M.Z. Kufian, L.P. Teo, S.R. Majid, and A.K. Arof, J. Alloys Compd., 486, 645 (2009).

[26] K.M. Colbow, J.R. Dahn, and R.R. Haering, J. Power Sources, 26, 397 (1989).

[27] E. Ferg, R.J. Gummov, A. de Kock, and M.M. Thacheray, J. Electrochem. Soc., 141, L147 (1994).

[28] Y. Abe, E. Matsui, and M. Senna, J. Phys. Chem. Solids, 68, 681 (2007)

[29] K. Nakahara, R. Nakajima, T. Matsushima, and H. Majima, J. Power Sources, 117, 131 (2003).

[30] K. Zaghib, M. Simoneau, M. Armand, and M. Gauthier, J. Power Sources, 81–82, 300 (1999).

[31] S.I. Pyun, S.W. Kim, and H.C. Shin, J. Power Sources, 81–82, 248 (1999).

[32] A. Guerfi, P. Charest, K. Kinoshita, M. Perrier, K. Zaghib, J. Power Sources 126, 163 (2004).

[33] V. Subramanian, A. Karki, K.I. Gnanasekar, F. Posey Eddy, and B. Rambabu, J. Power Sources, 159, 186 (2006).

[34] J.P. Wang, Y.Bai, M.Y. Wu, J. Yin, and W.F. Zhang, J. Power Sources, 191, 614 (2009).

[35] J.Z. Chen, L. Yang, and Y.F. Tang, J. Power Sources, 195, 6893 (2010).