Visible-Light Photocatalyst of Tetramethoxyphenylporphyrin Sensitized TiO2 Nanotube

Visible-Light Photocatalyst of Tetramethoxyphenylporphyrin Sensitized TiO2 Nanotube

Xiao-Jun Hu Qi-Zhong JiangXiao-Zhen Liao Wen-Feng Shangguan Zi-Feng Ma 

Department of Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240

School of Mechanical and Power Engineering, Shanghai Jiao Tong University, Shanghai, 200240

Corresponding Author Email: 
qzjiang@sjtu.edu.cn
Page: 
247-250
|
DOI: 
https://doi.org/10.14447/jnmes.v14i4.97
Received: 
31 March 2011
| |
Accepted: 
26 May 2011
| | Citation
Abstract: 

This paper investigated the performance of photocatalysts of TiO2 nanotubes sensitized by photosensitizers of tetramethoxyphenylporphyrin(TMPP) for producing H2 from water under visible light. This photocatalyst might have a smaller band gap (2.6 eV). The investigation shows that a photosensitized catalyst combined TiO2 nanotube with TMPP can be used to extend the absorption of solar light region and enhance the efficiency of energy conversion, and the quantity of H2 evolution is 1.427 L m-2h-1g-1. It was a way to apply the dye sensitized TiO2 nanotubes photocatalyst in the visible light for clean energy.

Keywords: 

nanotube; photocatalyst; sensitizer; tetramethoxyphenylporphyrin; TiO2

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusion
Acknowledgements

This work was supported by the National Natural Science Foundation of China (20976104, 21073120), and the National Basic Research Program of China (2009CB220004).

  References

[1] A. Fujishima, K. Honda, Nature, 37, 238 (1972).

[2] a) R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science, b 293, 269 (2001). b) F. Dong, H.Q. Wang and Z.B. Wu, J. Phys. Chem. C, 113, 16717 (2009). c) A.M. Czoska, S. Livraghi, M. Chiesa, E. Giamello, S. Agnoli, G. Granozzi, E. Finazzi, C. Di Valentin, G. Pacchioni, J. Phys. Chem. C, 112, 8951 (2008).

[3] Nils Baumann, Pubudu S. Gamage, Thilani N. Samarakoon, Jim Hodgson, Jurgen Janek and Stefan H. Bossmann, J. Phys. Chem. C, 114, 22763 (2010).

[4] Michael T. Brumbach, Andrew K. Boal, David R. Wheeler, Langmuir, 18, 10885 (2009).

[5] a)X. Wu, Q.Z. Jiang, Z.F. Ma, M. Fu, W.F. Shangguan, Solid State Commun., 136, 513 (2005). b) X. Wu, Q.Z. Jiang, Z.F. Ma, W.F. Shangguan, Solid State Commun., 143, 343 (2007).

[6] a) C.H. Lin, C.H Lee, J.H. Chao, C.Y. Kuo, Y.C. Cheng, W.N. Huang, H.W. Chang, Y.M. Huang, M.K. Shih, Catal. Lett., 98, 61 (2004). b) H.L. Kuo, C.Y. Kuo, C.H. Liu, J.H. Chao, C.H. Liu, J.H. Chao, C.H. Lin, Catal. Lett., 7, 113 (2007).

[7] G.S. Wu, Tomohiro Nishikawa, Bunsho Ohtani, A.C. Chen, Chem. Mater., 19, 4530 (2007).

[8] G. Faubert, R. Côté, D. Guay, J.P. Dodelet, G. Dénès, P. Bertrand, Electrochim. Acta, 43, 1969 (1998).