Fabrication of Cathode-supported Tubular Solid Oxide Electrolysis Cell for High Temperature Steam Electrolysis

Fabrication of Cathode-supported Tubular Solid Oxide Electrolysis Cell for High Temperature Steam Electrolysis

Le Shao Shaorong Wang* Jiqin Qian Yanjie Xue Renzhu Liu 

CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050,.China

Corresponding Author Email: 
srwang@mail.sic.ac.cn
Page: 
179-182
|
DOI: 
https://doi.org/10.14447/jnmes.v14i3.107
Received: 
November 14, 2010
| |
Accepted: 
February 14, 2011
| | Citation
Abstract: 

The cathode-supported tubular solid oxide electrolysis cell (SOEC) fabricated by dip-coating and co-sintering techniques have been studied for high temperature steam electrolysis application. The microstructure and electrochemical performeances were investigated in both SOEC and solid oxide fuel cell (SOFC) modes. In SOFC model, the maximum power densitity reached 390.7, 311.0 and 248.3 mW cm-2 at 850, 800, and 700 °C, respectively, running with H2 (105 mL min-1) and O2 (70 mL min-1) as working gases. In SOEC mode, the results indicated that the steam ratio had a strong impact on the performance of the tubular SOEC, and it’s better to operate the tubular SOEC in high steam ratio. I-V curves and EIS results suggested that the microstructure of the tubular SOEC needs to be optimized for mass transportation.

Keywords: 

 Solid oxide electrolysis, Hydrogen production, Tubular cell 

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
5. Acknowledgement

The authors are grateful for the financial support from the Science and Technology Commission of Shanghai Municipality No. 09DZ1206600. 

  References

[1] G. Marban, T. Valdes-Solis, Int. J. Hydrogen Energy, 32, 1625 (2007).

[2] J.D. Holladay, J.Hu, D.L. King, Y. Wang, Catalysis Today, 139, 244 (2009).

[3] A. Hauch, S.D. Ebbesen, M. Mogensen, J. Mater. Chem., 18, 2331 (2008).

[4] M. Ni, M. K. H. Leung, D.Y.C. Leung, Int. J. Hydrogen Energy, 33, 2337 (2008).

[5] A. Brisss, J. Schefold, M. Zahid, Int. J. Hydrogen Energy, 33, 5375 (2008).

[6] V. Utgikar, T. Thieesen, Int. J. Hydrogen Energy, 31, 939 (2006).

[7] Y. Shin, W. Park, J. Chang, J. Park, Int. J. Hydrogen Energy, 32, 1486 (2007).

[8] S. Fujiwara, S. Kasai, H. Yamauchi, K. Yamada, S. Makino, K. Matsunaga, M.Yoshino, T. Kameda, T. Ogawa, S. Momma, E. Hoashi, Progr. Nucl. Energy, 50, 422 (2008).

[9] C. Stoots, J. O’Brien, J. Hartvigsen, Int. J. Hydrogen Energy, 34, 4208 (2009).

[10] J. Udagawa, P. Aguiar, N.P. Brandon, J. Power Sources, 180, 354 (2008).

[11] N.M. Sammes, Y. Du, R. Bove, J. Power Sources, 145, 428 (2005).

[12] K. Kendall, M. Palin, J. Power Sources, 71, 268 (1998).

[13] R.Z. Liu, C. H. Zhao, J.L. Li, S.R. Wang, J. Power Sources, 

195, 541 (2010).

[14] Z.L. Zhan, W. Kobsiriphat, J.R. Wilson, Energy &Fuels, 23, 3089 (2009).

[15] Z.L. Zhan, L. Zhao, J. Solid State Electrochem, 195, 7250 (2010).