Fuel Cell Characteristics of the Membrane Electrode Assemblies using Phosphoric Acid-doped Poly[2,2’-(p-oxydiphenylene)-5,5’-bibenzimidazole] Membranes

Fuel Cell Characteristics of the Membrane Electrode Assemblies using Phosphoric Acid-doped Poly[2,2’-(p-oxydiphenylene)-5,5’-bibenzimidazole] Membranes

Liang Fang Li Sheng  Xiaoxia GuoJianhua FangZi-Feng Ma

School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240

Corresponding Author Email: 
jhfang@sjtu.edu.cn, zfma@sjtu.edu.cn
Page: 
159-165
|
DOI: 
https://doi.org/10.14447/jnmes.v14i3.104
Received: 
14 November 2010
|
Accepted: 
23 January 2011
|
Published: 
15 April 2011
| Citation
Abstract: 

The membrane electrode assemblies (MEAs) based on phosphoric acid (PA)-doped poly[2,2’-(p-oxydiphenylene)-5,5’-bibenzimidazole] (OPBI) membranes were prepared for the high temperature polymer electrolyte membrane fuel cells, and the moderate molecular weight poly[2,2’-(m-phenylene)-5,5’-bibenzimidazole] (mPBI) with good solubility in aprotic solvents was synthesized and utilized as the binder in catalyst layers for the first time. The hot press and the components in catalyst layers that affected the performances of MEAs were studied. The cell performance evaluation and electrochemical impedance spectroscopy were carried out at temperatures ranging from 80 to 160 °C in a single cell setup. It was found that the prepared OPBI and the moderate molecular weight mPBI with high solubilities of polybenzimidazole could facilitate and simplify the preparation of MEAs. The novel MEAs using the PA-doped OPBI membranes and moderate molecular weight mPBI exhibited good performances in the polarization tests, constant current tests, and temperature cycle tests, which were comparable with those traditional MEAs using the PA-doped mPBI.

Keywords: 

membrane electrode assembly; poly[2,2’-(p-oxydiphenylene)-5,5’-bibenzimidazole]; poly[2,2’-(m-phenylene)-5,5’-bibenzimidazole]; moderate molecular weight; solubility.

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Acknowledgements

This work was supported by China Postdoctoral Science Foundation (20090450696), Science and Technology Commission of Shanghai Municipality (09XD1402400, 10520708900) and Shanghai

Postdoctoral Scientific Program (09R21414200). Liang Fang gratefully acknowledge Dr. Yuning Li for pertinent advice.

  References

[1] P. Costamagna, S. Srinivasan, J. Power Sources, 102, 253 (2001).

[2] P. Costamagna, S. Srinivasan, J. Power Sources, 102, 242 (2001).

[3] B.C.H. Steele, A. Heinzel, Nature, 414, 345 (2001).

[4] M. Rikukawa, K. Sanui, Prog. Polym. Sci., 25, 1463 (2000).

[5] J. Rozière, D.J. Jones, Ann. Rev. Mater. Res., 33, 503 (2003).

[6] Q. Li, R. He, J. O. Jensen, N. J. Bjerrum, Fuel Cells, 4, 147 (2004).

[7] Q.F. Li, J.O. Jensen, R.F. Savinell, N.J. Bjerrum, Prog. Polym. Sci., 34, 449 (2009).

[8] J.A. Asensio, E.M. Sánchez, P. Gómez-Romero, Chem. Soc. Rev., 39, 3210 (2010).

[9]     G. Liu, H.M. Zhang, J.W. Hu, Y.F. Zhai, D.Y. Xu, Z.G. Shao, J. Power Sources, 162, 547 (2006).

[10] Y.F. Zhai, H.M. Zhang, G. Liu, J.W. Hu, B.L. Yi, J. Electrochem. Soc., 154, B72 (2007).

[11] K. Kwon, T.Y. Kim, D.Y. Yoo, S.G. Hong, J.O. Park, J. Power Sources, 188, 463 (2009).

[12] Q.F. Li, R.H. He, J.A. Gao, J.O. Jensen, N.J. Bjerrum, J. Electrochem. Soc., 150, A1599 (2003).

[13] C. Pan, R.H. He, Q.F. Li, J.O. Jensen, N.J. Bjerrum, H.A. Hjulmand, A.B. Jensen, J. Power Sources, 145, 392 (2005).

[14] J. Lobato, P. Cañizares, M.A. Rodrigo, J.J. Linares, Electrochim. Acta, 52, 3910 (2007).

[15] J.O. Jensen, Q. Li, R. He, C. Pan, N.J. Bjerrum, J. Alloy. Compd., 404, 653 (2005).

[16] J.O. Jensen, Q.F. Li, C. Pan, A.P. Vestbø, K. Mortensen, H.N. Petersen, C.L. Sørensen, T.N. Clausen, J. Schramm, N.J. Bjerrum, Int. J. Hydrog. Energy, 32, 1567 (2007).

[17] E.W. Neuse, Adv. Polym. Sci., 47, 1 (1982).

[18] T.S. Chung, Polym. Rev., 37, 277 (1997).

[19] Q.F. Li, H.A. Hjuler, N.J. Bjerrum, Electrochim. Acta, 45, 4219 (2000).

[20] C.K. Cheng, J.L. Luo, K.T. Chuang, A.R. Sanger, J. Phys. Chem. B, 109, 13036 (2005).

[21]  J. Lobato, P. Cañizares, M.A. Rodrigo, J.J. Linares, G. Manjavacas, J. Membr. Sci., 280, 351 (2006).

[22] Q.F. Li, H.A. Hjuler, N.J. Bjerrum, J. Appl. Electrochem., 31, 773 (2001).

[23] J.T. Wang, R.F. Savinell, J. Wainright, M. Litt, H. Yu, Electrochim. Acta, 41, 193 (1996).

[24] C. Pan, Q.F. Li, J. O. Jensen, R. H. He, L. N. Cleemann, M. S. Nilsson, N. J. Bjerrum, Q. X. Zeng, J. Power Sources, 172, 278 (2007).

[25] J.R. Klaehn, T.A. Luther, C.J. Orme, M.G. Jones, A.K. Wertsching, E.S. Peterson, Macromolecules, 40, 7487 (2007).

[26] H.T. Pu, G.H. Liu, Polym. Adv. Technol., 15, 726 (2004).

[27] H.T. Pu, G.H. Liu, Polym. Int., 54, 175 (2005).

[28] G.Q. Qian, D.W. Smith, B.C. Benicewicz, Polymer, 50, 3911 (2009).

[29] G.Q. Qian, B.C. Benicewicz, J. Polym. Sci. Pol. Chem., 47, 4064 (2009).

[30] R.T. Foster, C.S. Marvel, Journal of Polymer Science, 3, A417 (1965).

[31] M. Ueda, M. Sato, A. Mochizuki, Macromolecules, 18, 2723 (1985).

[32] Özaytekin, Karata, J. Appl. Polym. Sci., 109, 1861 (2008).

[33] Sannigrahi, S. Ghosh, J. Lalnuntluanga, T. Jana, J. Appl. Polym. Sci., 111, 2194 (2009).

[34] H.J. Xu, K.C. Chen, X.X. Guo, J.H. Fang, J. Yin, Polymer, 48, 5556 (2007).

[35] T.H. Kim, S.K. Kim, T.W. Lim, J.C. Lee, J. Membr. Sci., 323, 362 (2008).

[36] W. Wrasidlo, R. Empey, J. Polym. Sci. Pol. Chem., 5, 1513 (1967).

[37] H. Dai, H. Zhang, H. Zhong, H. Jin, X. Li, S. Xiao, Z. Mai, Fuel Cells, 10, 754 (2010).

[38] A.Y. Leykin, A.A. Askadskii, V.G. Vasilev, A.L. Rusanov, J. Membr. Sci., 347, 69 (2010).

[39] A.D. Modestov, M.R. Tarasevich, V.Y. Filimonov, A.Y. Leykin, J. Electrochem. Soc., 156, B650 (2009).

[40] J.S. Wainright, M.H. Litt, R.F. Savinell, in ''Handbook of Fuel Cells - Fundamentals, Technology and Applications'', Ed., W. Vielstich, H.A. Gasteiger, A. Lamm, John Wiley & Sons Ltd., 2003, p. 436.

[41] H.J. Kim, S.J. An, J.Y. Kim, J.K. Moon, S.Y. Cho, Y.C. Eun, H.K. Yoon, Y. Park, H.J. Kweon, E.M. Shin, Macromol. Rapid Commun., 25, 1410 (2004).

[42] L. Fang, J.H. Fang, Z.F. Ma, X.X. Guo, CN. 201010181022.4.

[43] J. Lobato, P. Cañizares, M.A. Rodrigo, J.J. Linares, J.A. Aguilar, J. Membr. Sci., 306, 47 (2007).

[44] J. Lobato, M.A. Rodrigo, J.J. Linares, K. Scott, J. Power Sources, 157, 284 (2006).

[45] M.Q. Li, Z.G. Shao, K. Scott, J. Power Sources, 183, 69 (2008).

[46] D.C. Seel, B.C. Benicewicz, L. Xiao, T.J. Schmidt, in ''Handbook of Fuel Cells - Fundamentals, Technology and Applications'', Ed., W. Vielstich, H. Yokokawa, H.A. Gasteiger, John Wiley & Sons Ltd., 2009, p. 300.