Effects of Hydrothermal Oxidation Temperature on the Performance of Natural Graphite as an Anode for Lithium-Ion Cells

Effects of Hydrothermal Oxidation Temperature on the Performance of Natural Graphite as an Anode for Lithium-Ion Cells

Mi LuYanyan Tian  Bing Huang  Xiaodong Zheng 

Laboratory of Clean Energy, Department of Chemistry and Chemical Engineering, Binzhou University, Binzhou, 256603, China

Department of Chemistry, Xiamen University, Xiamen, 361005, China

Corresponding Author Email: 
lumihit@sina.com
Page: 
153-157
|
DOI: 
https://doi.org/10.14447/jnmes.v14i3.103
Received: 
January 11, 2011
|
Accepted: 
March 18, 2011
|
Published: 
April 15, 2011
| Citation
Abstract: 

Natural graphite (NG) was hydrothermally oxidized at room temperature, 100 ºC and 200 ºC respectively to analyze the effects of temperature on the electrochemical performance of the NG as an anode for lithium ion cells. Charge/discharge results showed that the sample treated at 100 ºC exhibited the highest initial intercalation capacity of 340.1 mAh/g and a Coulombic efficiency of 89.9%, while the sample treated at 200 ºC showed the highest capacity retention of 96.5% after 20 charge/discharge cycles. X-ray photoelectron spectra revealed that groups containing oxygen were present on the surface of all samples, which explains why the performance of the sample treated at room temperature shows slightly improved electrochemical performance that can be further improved by increasing the oxidation temperature.

Keywords: 

 Lithium-ion cell; Anode; Natural graphite; Surface oxidation; Coulombic efficiency 

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
5. Acknowledgments

The work was supported by the National Natural Science Foundation of China (No. 20903104) and Binzhou University (No. 2008Y01, No. 2008ZDL04). 

  References

[1] J.B. Goodenough, Y. Kim, Chem. Mater., 22, 587 (2010).

[2] K. Zaghib, X. Song, A. Guerfi, R. Rioux, K. Kinoshita, J. 

[3] M. Yoshio, H.Y. Wang, K. Fukuda, Angew. Chem., 115, 4335 (2003).

[4] F. Cao, I.V. Barsukov, H.J. Bang, P. Zaleski, J. Prakash, J. Electrochem. Soc., 147, 3579 (2000).

[5] X.G. Sun, S. Dai, J. Power Sources, 195, 4266 (2010).

[6] J. Shim, K.A. Striebel, J. Power Sources, 130, 247 (2004).

[7] K. Striebel, A. Guerfi, J. Shim, M. Armand, M. Gauthier, K. Zaghib, J. Power Sources, 119, 951 (2003).

[8] K. Zaghib, K. Striebel, A. Guerfi, J. Shim, M. Armand, M. Gauthier, Electrochim. Acta, 50, 263 (2004).

[9] Y.P. Wu, C. Jiang, C. Wan, R. Holze, Solid State Ionics,  156, 283 (2003).

[10] Y.P. Wu, C. Jiang, C. Wan, E. Tsuchida, Electrochem. Commun., 2, 626 (2000).

[11] C. Menachem, Y. Wang, J. Flowers, E. Peled, S.G. Greenbaum, J. Power Sources, 76, 180 (1998).

[12] M. Lu, Y.Y. Tian, Y. Yang, Electrochim. Acta, 54, 6792 (2009).

[13] Y.S. Wu, Y.H. Lee, Z.W. Yang, Z.Z. Guo, H.C. Wu, J. Physics and Chem. of Solids, 69, 376 (2008).

[14] T. Nakajima, J. Fluorine Chem., 128, 277 (2007).

[15] T. Tsumura, A. Katanosaka, I. Souma, T. Ono, Y. Aihara, J. Kuratomi, M. Inagaki, Solid State Ionics, 135, 209 (2000).

[16] H. Wang, T. Umeno, K. Mizuma, M. Yoshio, J. Power Sources, 175, 886 (2008).

[17] N. Ohta, K. Nagaoka, K. Hoshi, S. Bitoh, M. Inagaki, J. Power Sources, 194, 985 (2009).

[18] J.L. Shui, J. Zhang, C.X. Ding, X. Yang, C.H. Chen, Materials Science and Engineering B, 128, 11 (2006).

[19] Y.S. Park, S.M. Lee, Electrochim. Acta, 54, 3339 (2009).

[20] L. Zou, F. Kang, X. Li, Y.P. Zheng, W. Shen, J. Zhang, J. Physics and Chemistry of Solids, 69, 1265 (2008).

[21] M. Lu, H. Cheng, Y. Yang, Electrochim. Acta, 53, 3539 (2008).