Design and Synthesis of In Situ VGCFs Improved LiFePO4 Composite Cathode Materials

Design and Synthesis of In Situ VGCFs Improved LiFePO4 Composite Cathode Materials

Fei Deng Xierong ZengJizhao Zou Jianfeng Huang Xinbo Xiong Xiaohua Li Hongchao Sheng 

School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’ an, 710072

College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060; Shenzhen Key Laboratory of Special Functional Materials, Shenzhen 518060

Shenzhen Key Laboratory of Special Functional Materials, Shenzhen 518060

Corresponding Author Email: 
zengxier@szu.edu.cn
Page: 
27-30
|
DOI: 
https://doi.org/10.14447/jnmes.v14i1.126
Received: 
30 August 2010
| |
Accepted: 
20 October 2010
| | Citation
Abstract: 

One of the most important factors which currently limit the application of LiFePO4 cathode material in lithium-ion batteries is its low electronic conductivity. In order to enhance the electronic conductivity of LiFePO4 cathode material, in situ vapor-grown carbon fibers (VGCFs) improved LiFePO4 composite cathode materials were designed and synthesized in one step by microwave pyrolysis chemical vapor deposition (MCVD). The phase, microstructure and electrochemical performances of the composite cathode materials were investigated. Results show that network-like VGCFs formed during the MCVD process generally grow with an in situ growth mode on the graphite particles, which is extremely beneficial to improve the electronic conductivity of the composite cathode materials. The initial discharge capacity of the composite cathode materials, compared with the cathodes without in situ network-like VGCFs, increases from 109 mAhg-1 to 144 mAhg-1 at 0.5C rate, and the total electric resistance corresponding to the electron jumping varies from 538 Ω to 66 Ω.

Keywords: 

Vapor-grown carbon fibers; Lithium iron phosphate; Microwave; Chemical vapor deposition; Lithium ion batteries

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Acknowledgements

This work was supported by the National Natural Science Foundation of China (50672059).

  References

[1] A.K. Padhi, K.S. Najundaswamy, J.B. Goodenough, J. Electrochem. Soc., 144, 1188 (1997).

[2] A.K. Padhi, K.S. Najundaswamy, C. Masquelier, S. Okada, J.B. Goodenough, J. Electrochem. Soc., 144, 1906 (1997).

[3] A.K. Padhi, K.S. Najundaswamy, C. Masquelier, J.B. Goodenough, J. Electrochem. Soc., 144, 2581 (1997).

[4] S.Y. Chung, J.T. Bloking, Y.M. Chiang, Nat. Mater., 1, 123 (2002).

[5] J. Molenda, A. Stoklosa, T. Bak, Solid State Ionics, 36, 53 (1989).

[6] J. Guan, M. Liu, Solid State Ionics, 110, 21 (1998).

[7] H. Huang, S.C. Yin, L.F. Nazar, Electrochem. Solid-State Lett., 4, A170 (2001).

[8] N. Ravet, J.B. Goodenough, S. Besner,M. Simoneau, P. Hovington, M. Armand, In: 196th meeting of the Electrochemical Society. Meeting Abstracts MA1999-02, Honolulu, 1999.

[9] I. Belharouak, C. Johnson, K. Amine, Electrochem. Commun., 7, 983 (2005).

[10] F. Croce, A.D. Epifanio, J. Hassoun, A. Deptula, T. Olczac, B. Scrosati, Electrochem. Solid-State Lett., 5, A47 (2002).

[11] K. Tatsumi, K. Zaghib, Y. Sawada, H. Abe, T. Ohsaki, J. Electrochem. Soc., 142, 1090 (1995).

[12] M. Endo, Y. Nishimura, T. Takahashi, K. Takeuchi, M.S. Dresselhaus, J. Phys. Chem. Solids, 57, 725 (1996).

[13] M. Endo, Y.A. Kim, T. Hayashi, K. Nishimura, T. Matsushita, K. Miyashita, Carbon, 39, 1287 (2001).

[14] C.C. Chen, M.H. Liu, J.M. Chen, In: 206th meeting of the Electrochemical Society. Meeting Abstracts MA2004-02, Honolulu, 2004.

[15] X.L. Li, F.Y. Kang, X.D. Bai, W.C. Shen, Electrochem. Commun., 9, 663 (2007).

[16] B. Jin, E.M. Jin, K.H. Park, H.B. Gu, Electrochem. Commun., 10, 1537 (2008).

[17] M. Higuchi, K. Katayama, Y. Azuma, M. Yukawa, M. Suhara, J. Power Sources, 119, 258 (2003).

[18] K.S. Park, J.T. Son, H.T. Chung, S.J. Kim, C.H. Kim, C.H. Lee, Electrochem. Commun., 5, 839 (2003).

[19] J.Z. Zou, X.R. Zeng, X.B. Xiong, H.L. Tang, L. Li, Q. Liu, Carbon, 45, 828 (2007).

[20] X.R. Zeng, F. Deng, J.Z. Zou, H.C. Sheng, J.F. Huang, Patent CN:10110427.6, 2009.

[21] N.C. Popa, J. Appl. Cryst., 31, 176 (1998).