Nickel Nanoparticles on Carbon Nanotubes: Synthesis, Characterization and Hydrogen Storage

Nickel Nanoparticles on Carbon Nanotubes: Synthesis, Characterization and Hydrogen Storage

M.Z. Figueroa-TorresC. Dominguez-Rios J.G. Cabanas-Moreno K. Suarez-Alcantara A. Aguilar-Elguezabal

Centro de Investigación en Materiales Avanzados, S. C., Depto. de Química de Materiales. Miguel de Cervantes 120, Complejo Industrial Chihuahua, CP. 31130, Chihuahua, Chihuahua, México.

Instituto Politécnico Nacional, UPALM, Escuela Superior de Física y Matemáticas, Departamento de Ciencia de Materiales, Apdo. Postal 21-408, C.P. 04021, México, DF, México

Corresponding Author Email: 
m_zyzlila@yahoo.com.mx; alfredo.aguilar@cimav.edu.mx
Page: 
277-282
|
DOI: 
https://doi.org/10.14447/jnmes.v13i3.170
Received: 
18 November 2009
| |
Accepted: 
26 January 2010
| | Citation
Abstract: 

Nickel nanoparticles were deposited on multiwall carbon nanotubes (Ni-MWCNT) in a single step by electroless plating technique. The effect of bath composition on the resulting nanoparticles was examined by scanning and transmission electron microscopy. To improve nickel dispersion a surface treatment was made to raw MWCNT. Hydrogen storage measurements were determined at 77 K and atmospheric pressure and also at 303 K in the pressure range of 0.1 to 5 MPa. Results show that highly dispersed nickel nanoparticles were deposited on the external MWCNT wall using hydrazine as reducing agent. Surface modifications help to improve hydrogen storage. For Ni-MWCNT hydrogen storage was increased two times compared to raw MWCNT at 303 K and 5 MPa.

Keywords: 

Carbon Nanotubes, nickel, electroless, Hydrogen storage

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Acknowledgments

To CONACYT for the financial support through the project 4777 No. 47776, to Roal Torres and Manuel Román from CIMAV for their help in the experimental part.

  References

[1] Louis Schlapbahc and Andreas Züttle. Nature, 414, 353 (2001).

[2] Yuda Yürüm, Alpay Taralp, T. Nejat Veziroglu. Int. J. Hydrogen Energ., 34, 3784 (2009).

[3] Elena David. J. Mater. Process. Tech.162, 169 (2005).

[4] R. Ströbel, J. Garche, P.T. Moseley, L. Jörissen, G. Wolf. J. Power Sources, 159, 781 (2006).

[5] Lueking A, Yang R.T., J Catal., 206, 165 (2002).

[6] Yildirim T, Ciraci S. Phys. Rev. Lett., 94, 175501 (2005).

[7] Zacharia R, Rather S-U, Hwang SW, Nahm KS. Chem. Phys. Lett., 286, 434 (2007).

[8] Lueking A, Yang RT. AIChE J., 49, 1556 (2003).

[9] M. Zielinski, R.Wojcieszak, S. Monteverdi, M. Mercy, M.M. Bettahar Int. J. Hydrogen Energ., 32, 1024 (2007).

[10] Sami-ullah Rather, Renju Zacharia, Sang Woon Hwang, Meharj-ud-din Naik, Kee Suk Nahm. Chem. Phys. Lett., 441, 261 (2007).

[11] Hyun-Seok Kim, Ho Lee, Kyu-Sung Han, Jin-Ho Kim, Min-Sang Song, Min-Sik Park,Jai-Young Lee, and Jeung-Ku Kang. J. Phys. Chem. B, 109, 8983 (2005).

[12] Angela Lueking and Ralph T. Yang. J. Catal., 206, 165 (2002).

[13] G.O. Mallory, J.B. Hajdu. Electroless Plating: Fundamentals and Applications, American Electroplaters and Surface Finishers Society (AESF), N. Y. 1990.

[14] S. Haag, M. Burgard, B. Ernst. Surf. Coat. Tech., 201, 2166 (2006).

[15] E. Raymundo-Piñero , D. Cazorla-Amorós, A. Linares-Solano, S. Delpeux, E. Frackowiak , K. Szostak , F. Béguin. Carbon, 40, 1614 (2002).

[16] F.Z. Kong, X.B. Zhang, W.Q. Xiong, F. Liu, W.Z. Huang, Y.L. Sun, J.P. Tu, X.W. Chen. Surf. Coat. Tech., 155, 33 (2002).

[17] Li-Ming Ang, T.S. Andy Hor, Guo-Qin Xu, Chih-hang Tung, Siping Zhao, and John L.S. Wang. Chem. Mater., 11, 2115 (1999).

[18] Haijun Zhang, Xiangwei Wu, Quanli Jia, Xiaolin Jia. Mater. Des., 28, 1360 (2007).

[19] L. Zubizarreta, J.A. Menéndez, J.J. Pis, A. Arenilla. Int. J. Hydrogen Energ., 24, 3070 (2009).

[20] Peng-Xiang Hou, Shi-Tao Xu, Zhe Ying, Quan-Hong Yang, C. Liu, Hui-Ming Cheng. Carbon, 41, 2471 (2003).

[21] Lifeng Wang, Frances H. Yang and Ralph T. Yang, Ind. Eng. Chem. Res. 48 (2009) 2920.

[22] Anthony J. Lachawiec, Jr., Gongshing Qi, and Ralph T. Yang. Langmuir, 21, 11418 (2005).

[23] Renju Zacharia, Keun Young Kim, A.K.M. Fazle Kibria, Kee Suk Nahm. Chem. Phys. Lett., 412, 369 (2005).

[24] M. Sankaran, B. Viswanathan. Carbon, 45, 1628 (2007).

[25] Sami-ullah Rather, Naik Mehraj-ud-din, Renju Zacharia, Sang Wood Hwang, Ae Rahn Ki, Kee Suk Nahm. Int. J. Hydrogen Energ., 34, 961 (2009).