Amorphous Metallic Alloys for Oxygen Reduction Reaction in a Polymer Electrolyte Membrane Fuel Cell

Amorphous Metallic Alloys for Oxygen Reduction Reaction in a Polymer Electrolyte Membrane Fuel Cell

R. Gonzalez-HuertaI. Guerra-Martinez J. Santiago Lopez A. R. Pierna O. Solorza-Feria 

Instituto Politécnico Nacional, ESIQIE, Laboratorio de Electroquímica, UPALM, Ed.7, 07830, México D.F. Mexico

Chemical Engineering and Environment Department. University of the Basque Country, Plaza de Europa, 20018 San Sebastián. Spain

Depto. Quíımica, Centro de Investigación y de Estudios Avanzados del IPN, A. Postal 14-740, 07360 México, D.F. Mexico

Corresponding Author Email:
20 November 2009
| |
27 February 2010
| | Citation

Amorphous alloyed compounds have been used as electrode materials in electrochemical energy conversion devices. An inter- esting and important goal for their applications in polymer electrolyte membrane fuel cells is the optimization of the electrocatalysts load- ing in the membrane electrode assemblies (MEAs). Kinetics of the oxygen reduction reaction (ORR) on Ni59Nb40Pt0.6Ru0.4, Ni59Nb40Pt0.6Sn0.4 and Ni59Nb40Pt0.6Ru0.2Sn0.2 amorphous catalysts synthesized by mechanical milling were investigated in 0.5M H2SO4 at 25°C. The electro- catalytic activity of ink thin-film type electrodes evaluated by cyclic voltammetry (CV) and rotating disk electrode (RDE) showed that the Ni59Nb40Pt0.6Sn0.4 amorphous electrocatalyst was the most active from the three electrodes for the cathodic reaction. Fuel cell experiments were conducted at various temperatures at 30 psi for H2 and at 34 psi for O2. MEAs fabricated using Nafion®115 membrane and amor- phous Ni59Nb40Pt0.6Sn0.4 dispersed on carbon powder was tested as cathode electrocatalyst (1 mg cm-2) in a single polymer electrolyte membrane fuel cell, generating a power density of 156 mW cm-2 at 0.43V and 80°C.


Amorphous alloy, Electrocatalyst, Oxygen reduction, Fuel Cell.

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions

The authors gratefully acknowledge the financial support of ICYTDF (project PICS08-37), IPN (project SIP-20090433), UPV/EHU (GIU2006/2009), MEC(CTQ2006-13163/BQU). The authors wish to acknowledge to Dra. Mayahuel Ortega for technical assistance in SEM measurements.


[1] R. Janot, D. Guérard, Prog. Mat. Sci., 50, 1 (2005).

[2] V. Collins-Martínez, R.G. González-Huerta, A. López-Ortiz, D. Delgado-Vigil, O. Solorza-Feria, J. New Mat. Electrochem. Systems, 12, 63 (2009).

[3] R.G. González Huerta, A.R. Pierna, O. Solorza Feria in “Procceedings of the Simposio Ibérico de Hidrógeno, Pilas de Combustible y Baterías Avanzadas”, HYCELTEC, Bilbao, Spain, July 1-4, 2008.

[4] P. Sotelo Mazón, R.G. González Huerta, J.G. Cabañas Moreno, O. Solorza Feria, Int. J. Electrochem Sci., 2, 523 (2007).

[5] A. Ezeta, E.M. Arce, O. Solorza, R.G. González, J. Alloys and Compounds, 483, 429 (2009).

[6] L. Liu, H. Kim, J.W. Lee, B.N. Popov, J. Electrochem. Soc., 154, A123 (2007).

[7] A. Hamnett, in “Handbook of Fuel Cells, Fundamental Technology and Aplications”, Ed. W Vielstich, A Lamm, H Gasteiger, John Wiley, England, 2003, Vol. 2.

[8] Kinoshita K., in “Electrochemical Oxygen Technology”, Ed., John Wiley, 1992, ch. 1, 4.

[9] R.G. González Huerta, A.R. Pierna, O. Solorza Feria, J. New Mat. Electrochem. Systems, 11, 63 (2008).

[10] G. Ramos-Sánchez, A.R. Pierna, O. Solorza-Feria, J. Non-Crystalline Solids, 354, 5165 (2008).

[11] J. Barranco, A.R. Pierna, J. Non-Crystalline Solids, 353, 851 (2007).

[12] R.G. González Huerta, A. Guzmán, O. Solorza Feria, Int. J. Hydrogen Energy, In press 2010.