Nanostructured CdS:Cu Formed by Chemical Doping in an Aqueous Bath

Nanostructured CdS:Cu Formed by Chemical Doping in an Aqueous Bath

Luis Ixtlilco P.J. SebastianD. Eapen Joel Pantoja 

Posgrado en Ciencia e Ingeniería de Materiales, UAEM, Avenida Universidad 1000, Chamilpa, Cuernavaca, Morelos, México

Centro de Investigación en Energía – UNAM, 62580 Temixco, Morelos, México

Cuerpo Académico de Energía y Sustentabilidad, Universidad Politécnica de Chiapas, Eduardo J. Selvas S/N, Magisterial, Tuxtla Gutiérrez, Chiapas 29010, México

Corresponding Author Email: 
sjp@cie.unam.mx
Page: 
15-20
|
DOI: 
https://doi.org/10.14447/jnmes.v13i1.190
Received: 
29 July 2009
| |
Accepted: 
4 August 2009
| | Citation
Abstract: 

Nanostructured CdS thin films doped with Cu were synthesized by chemical bath deposition. The structural, morphological, optical and opto-electronic properties of CdS were modified by Cu doping and resulted in the formation of nanostructured films. No compounds other than CdS were formed in this process. The atomic force microscopy (AFM) studies showed that the particle morphology transformed from spherical to nanostructured or amorphous for un-doped to doped, caused by Cu doping. The optical absorption maxima was displaced for the doped films compared to the un-doped films, so also variation in the band gap energy (Eg) which may be attributed to the variation in the grain size of the films with doping. The intensity of photocurrent response of the doped CdS was reduced compared to the un-doped films, due to the increase in the minority carrier concentration by Cu doping.

Keywords: 

CdS:Cu, nanostructure, chemical doping, photocurrent, p-type semiconductor

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Acknowledgements

The authors acknowledge the technical assistance received from Gildardo Casarubias and Maria Luisa Ramon in the characterization of the materials. The financial support for the project was received from DGAPA-UNAM through the project IN113107.

  References

[1] B. M. Basol, Sol. Cells 23, 69 (1988).

[2] S. K. Das and G. C. Morris, J. Appl. Phys. 73, 782 (1993).

[3] A. Rockett and R. W. Birkmire, J. Appl. Phys. 70, R81 (1991).

[4] P. K. Nair, M. T. S. Nair, J. Campos, and L. E. Sansores, Sol. Cells 22, 137 (1987).

[5] P. K. Nair, J. Campos, and M. T. S. Nair, Semicond. Sci. Technol. 3, 134 (1988).

[6] Yasube Kashiwaba, Itaru Kanno and Toshio Ikeda, Jpn. J. Appl. Phys. Vol. 31 (1992) pp. 1170-1175

[7] T. Edamura and J. Muto: Thin solid Films, 235 (1993) 198-201.

[8] P. J. Sebastian: Appl. Phys. Lett. 62 (1993).

[9] D. Petre, I. Pintilie, E. Pentia, I. Pintilie and T. Botila : Materials Science and Engineering B58 (1999) 238-243.

[10] S. Mathew, P. S. Mukerjee and K. P. Vijayakumar: Jpn. J. Appl. Phys. 34 (1995) pp. 4940 - 4944.

[11] S. Keitoku, H. Ezumi, H. Ozono and M. Ohta: Jpn. J. Appl. Phys. 34 (1995) pp. L138-L140

[12] Y. Kashiwaba, H. Kirita, H. Abe and T. Ikeda : Jpn. J. Appl. Phys. 29 (1990) 1733-1738.

[13] Yasube Kashiwaba, Katsuaki Isojima, Koji Ohta, Solar Energy Materials & Solar Cells 75 (2003) 253-259.

[14] K. P. Varkey and K. P. Vijayakumar: Jpn. J. Appl. Phys. 36 (1997) pp. L394-L396

[15] K. P. Varkey, K. P. Vijayakumar, T. Yoshida and Y. Kashiwaba: renewable Energy 18 (1999) 465-472

[16] Yasube Kashiwaba, Jun Sato, Takashi Abe, Applied Surface Science 212-213 (2003) 162-165.

[17] H. Murai, T. Abe, J. Matsuda, H. Sato, S. Chiba, Y. Kashiwaba : Appl. Surf. Sci. 244 (2005) 351-354.

[18] M. T. S. Nair, P. K. Nair, R. A. Zingaro and E. A. Meyers: J. Appl. Phys. 75 (1994) 1557.

[19] P. K. Nair, O. Gómez Daza, A. Arias-Carbajal Reádigos, J. Campos and M. T. S. Nair: Semicond. Sci. Technol. 16 (2001) 651-656.