Electrochemical evaluation of Ti/TiO2-polyaniline Anodes for Microbial Fuel Cells using Hypersaline Microbial Consortia for Synthetic-wastewater Treatment

Electrochemical evaluation of Ti/TiO2-polyaniline Anodes for Microbial Fuel Cells using Hypersaline Microbial Consortia for Synthetic-wastewater Treatment

Xochitl D. BenettonS.G. Navarro-Ávila C. Carrera-Figueiras 

Biotecnología y Bioingeniería, Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Campus de Ingenieria y Ciencias Exactas, Periférico Norte Kilómetro 33.5, Tablaje Catastral 13615, Col. Chuburná de Hidalgo Inn, CP 97203, Mérida, Yucatán, México.

Química Fundamental y Aplicada, Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Campus de Ingenieria y Ciencias Exactas, Periférico Norte Kilómetro 33.5, Tablaje Catastral 13615, Col. Chuburná de Hidalgo Inn, CP 97203, Mérida, Yucatán, México.

Corresponding Author Email: 
xoch.dominguez@uady.mx
Page: 
1-6
|
DOI: 
https://doi.org/10.14447/jnmes.v13i1.184
Received: 
29 July 2009
| |
Accepted: 
4 August 2009
| | Citation
Abstract: 

A Ti/TiO2-polyaniline (PAni) composite electrode was developed and explored with electrochemical methods. The results of electrochemical impedance spectroscopy (EIS) demonstrate that under abiotic conditions the cathode is the limiting component of the electrochemical cell for the occurrence of the charge-transfer reactions. In contrast, when the Ti/TiO2-PAni composite is working as anode in the microbial fuel cells (MFCs) studied, the controlling electrochemical processes occur at the anode. The higher power densities, 2317 mW/m², were obtained with a pure culture of Geobacter sulfurreducens, and significant power density was obtained with an uncharacterized consortium, 1137 mW/m². The results showed that the Ti/TiO2-PAni anode is a suitable material to be optimized for developing highpower MFCs with G. sulfurreducens for wastewater treatment.

Keywords: 

microbial fuel cell (MFC), polyaniline (PAni), impedance spectroscopy (EIS), Geobacter sulfurreducens

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusion
Acknowledgments

Dr. Bernard Tribollet (Laboratoire Interfaces et Systemes Electrochimiques, LISE - UPR15 du CNRS, Université Pierre et Marie Curie, France) is specially acknowledged for the technical assistance on impedance spectroscopy. We are also thankful to Professor Derek Lovley (Geobacter Project, Environmental Biotechnology Center, UMass/Amherst,USA), for donating the Geobacter sulfurreducens strain used for this investigation. We also express our gratitude to Dr. Ulises Morales-Ortiz (Departamento de Química, Área Electroquímica, UAM Iztapalapa, Mexico), for providing the Ti coupons.

  References

[1] B.E Logan, J.M. Regan, Microbial fuel cells—challenges and applications, Environ. Sci. Tech., 40, 5172 (2006).

[2] D. Holzman, Microbe Power, Environmental Health erspectives, 113, A754 (2005).

[3] H. Liu, S. Cheng, B.E. Logan, Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell, Environ. Sci. Technol., 39, 5488 (2005).

[4] D. Zhuwei, L. Haoran, G. Tingyue, A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy, Biotechnology Advances, 25, 464 (2007).

[5] J. Niessen, U. Schroder, M. Rosenbaum, F.A. Scholz, Fluorinated Polyanilines as Superior Materials for Electrocatalytic Anodes in Bacterial Batteries, Electrochem. Commun., 6, 571 (2004).

[6] J. Niessen, U. Schroder, M. Rosenbaum, F.A. Scholz, Heat treated soil as convenient and versatile source of bacterial communities for microbial electricity generation, Electrochem. Commun., 8, 869 (2006).

[7] U. Schroder, J. Nieben, F.A. Scholz, Generation of microbial fuel cells with current outputs boosted by more than one order of magnitude, Angew. Chem. Int. Ed., 42, 2880 (2003).

[8] D.A. Lowy, L.M. Tender, J.G. Zeikus, D.H. Park, D.R. Lovley, Harvesting energy from the marine sediment-water interface II: Kinetic activity of anode materials, Biosens. Bioelectron., 21, 2058 (2006).

[9] Y. Qiao, B. Shu-Juan, C. Ming Li, C. Xiao-Qiang, L. Zhi-Song, G. Jun, Nanostructured Polyaniline/Titanium Dioxide Composite Anode for Microbial Fuel Cells, ACS NANO, 2, 113 (2008).

[10] V.E. Henrich, The Surface Science of Metal Oxides, Cambridge University Press, ISBN-10: 0521566878 (1996).

[11] B.P. Martins, Recent Developments in Superconductivity Research, Nova Publishers, ISBN-10: 1600214622 (2006).

[12] K. Rabaey, N. Boon, S.D. Siciliano, M. Verhaege, W. Verstraete, Biofuel cells select for microbial consortia that selfmediate electron transfer, Applied and Environmental Microbiology, 70, 5373 (2004).

[13] K.P. Nevin, H. Richter , S.F. Covalla, J.P. Johnson, T.L. Woodard, A.L. Orloff, H. Jia, M. Zhang, D.R. Lovley, Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells, Environmental Microbiology, 10, 2505 (2008).

[14] M.V. Coppi, C. Leang, S.J. Sandler, D.R. Lovley, Development of a genetic system for Geobacter sulfurreducens, Applied and Environmental Microbiology, 67, 3180 (2001).

[15] H. Castaneda, X. Domínguez-Benetton, SRB-biofilm influence in active corrosion sites formed at the steel-electrolyte interface when exposed to artificial seawater conditions, Corrosion Science, 50, 1169 (2008).

[16] X. Domínguez-Benetton, Biocomplexity and electrochemical influence of biofilms in carbon steel deterioration: Transmission lines approach for electrochemical impedance analysis, DSc Thesis, Mexican Petroleum Institute (2007).

[17] Avila-García, U. Morales-Ortiz U., Thermally and air–plasma-oxidized titanium and stainless steel plates as solar selective absorbers, Solar Energy Materials & Solar Cells, 90, (2006).

[18] J. Castrellón-Uribe, M. E. Nicho, Transmitancia Óptica de Polímeros Conductores de Polianilina con Sensitividad al Amoniaco, Encuentro de Investigación en Ingeniería Eléctrica, Zacatecas, Zacatecas, Mexico (2006).

[19] S. Cattarin, M. Musiani, B. Tribollet, Nb Electrodissolution in Acid Fluoride Medium 6 Xochitl D. Benetton et al. / J. New Mat. Electrochem. Systems Steady-State and Impedance Investigations, Journal of The Electrochemical Society, 149, B457 (2002).

[20] A. Survila, Z. Mockus, Current oscillations and a negative impedance observed during copper and tin codeposition from solutions involving Laprol 2402C as a surface-active substance, Electrochimica Acta, 44, 1707 (1999).

[21] A.K. Manohar, O. Bretschger, K.H. Nealson, F. Mansfeld, The polarization behavior of the anode in a microbial fuel cell, Electrochimica Acta, 53, 3508 (2008a).

[22] A.K. Manohar, O. Bretschger, K.H. Nealson, F. Mansfeld,The use of electrochemical impedance spectroscopy (EISb) in the evaluation of the electrochemical properties of a microbial fuel cell, Bioelectrochemistry, 72, 149 (2008).

[23] G. Reguera, R.B. Pollina, J.S. Nicoll, D.R. Lovley, Possible nonconductive role of Geobacter sulfurreducens pilus nanowires in biofilm formation, J. Bacteriol., 189, 2125 (2007).