Electrochemical Performance of SnPO4-coated LiNi1/3Mn1/3Co1/3O2 Cathode Materials
OPEN ACCESS
A Sn phosphate was successfully coated to the surface of LiNi1/3Co1/3Mn1/3O2 particles using a new method we developed. The elements Sn and P were observed to be uniformly distributed on the surface of the LiNi1/3Co1/3Mn1/3O2. After the Sn phosphate coating, the onset temperature shifted up to about 250 oC, and the exothermic value also decreased to 116.3 J/g, i.e. the thermal stability of the material was enhanced.
The rate capability of the 1 wt% Sn phosphate-coated LiNi1/3Co1/3Mn1/3O2 materials was enhanced at room temperature and 60 oC. However, a 3 wt% Sn phosphate coating degraded the electrochemical performance. The 1 wt% Sn phosphate-coated material showed improved cycle performance compared to that of the bare material at room temperature and 60 oC. It is believed that the oxide coating layer prevented direct contact with the organic electrolyte.
SnPO4, LiNi1/3Mn1/3Co1/3O, thermal stability, rate capability, cycle performance
This research was supported by a grant (code number: 08K1501- 01510) from the Center for Nanostructured Materials Technology under the 21st Century Frontier R&D Programs of the Ministry of Education, Science and Technology, Korea.
[1] J. N. Reimers, J. R. Dahn, J. Electrochem. Soc., 139, 2091 (1992).
[2] T. Ohzuku, A. Ueda, J. Electrochem. Soc., 141, 2972 (1994).
[3] J. Kim, C. Park, Y. Sun, Solid State Ionics, 164, 43 (2003).
[4] S. Wu, C.W. Yang, J. Power Sources, 146, 270 (2005).
[5] I. Belharouak, H. Tsukamoto, K. Amine, J. Power Sources, 119-121, 175 (2003).
[6] Y. Talyosef, B. Markovsky, G. Salitra, D. Aurbach, H. Kim, and S. Choi, J. Power Sources, 146, 664 (2005).
[7] D. D. MacNeil, Z. H. Lu, J. R. Dahn, J. Electrochem. Soc., 149, A1332 (2002).
[8] K. M. Shaju, G. V. S. Rao, B. V. R. Chowdari, Electrochim. Acta, 48, 145 (2002).
[9] N. Yabuuchi, T. Ohzuku, J. Power Sources, 119, 171 (2003).
[10] D.-C. Li, T. Muta, Li.-Qi. Zhang, M. Yoshio, H. Noguchi, J. Power Sources, 132, 150 (2004).
[11] H. Y. Xu, S. Xie, C. P. Zhang, C. H. Chen, J. Power Sources, 148, 90 (2005).
[12] T. Ohzuku, Y. Makimura, Chem. Lett., 7, 642 (2001).
[13] S. Na, H. Kim, and S. Moon, Solid State Ionics, 176, 313 (2005).
[14] Y. Kim, H. Kim, and S. W. Martin, Electrochimica Acta, 52, 1316 (2006).
[15] H. Kim, Y. Kim, S. Kim, and S. W. Martin, J. Power Sources, 161, 623 (2006).
[16] J. Cho, Y. W. Kim, B. Kim, B. Park, Angew. Chem. Int. Ed., 42, 16181 (2003).
[17] J. Kim, M. Noh, J. Cho, H. Kim, K. Kim, J. Electrochem. Soc., 152, A1142 (2005).
[18] S. Oh, J. K. Lee, D. Byun, W. I. Cho, B. W. Cho, J. Power Sources, 132, 249 (2004).
[19] K. S. Tan, M. V. Reddy, G. V. Subba Rao, B. V. R. Chowdari, J. Power Sources, 141, 129 (2005).
[20] J. Cho, T.-J. Kim, J. Kim, M. Noh, B. Park, J. Electrochem. Soc., 151, A1899 (2004).
[21] A. Bibby, L. Mercier, Chem. Mater., 14, 1594 (2002).
[22] Y. M. Choi, S. I. Pyun, Solid State Ionics, 99, 173 (1997).
[23] F. Nobili, F. Croce, B. Scrosati, R. Marassi, Chem. Mater., 13, 1642 (2001).
[24] Z. R. Zhang, H. S. Liu, Z. L. Gong, Y. Yang, J. Power Sources, 129, 101 (2004).
[25] M. D. Levi, G. Salitra, B. Markovsky, H. Teller, D. Aurbach, U. Heider, L. Heider, J. Electrochem. Soc., 146, 1279 (1999).
[26] K. A. Striebel, E. Sakai, E. J. Cairns, J. Electrochem. Soc., 149, A61 (2002).
[27] J. Cho, Y. J. Kim, T. J. Kim, B. Park, Angew. Chem. Int. Ed., 40, 3367 (2001).
[28] Z. Chen, J. R. Dahn, Electrochem. Solid-State Lett., 5, 213 (2002).
[29] J. Cho, Y. J. Kim, B. Park, Chem. Mater., 12, 3788 (2000).