OPEN ACCESS
A promising water desalination system based on direct contact membrane distillation (DCMD) powered by flat plate solar collector (FPC) is proposed in the present study. The carried out system is modelized and simulated by using the commercial code TRNSYS. Doing this was possible by including a novel component able to simulate the physical behavior of the DCMD. The simulation of the solar distillation system has been done during the 21st june along a daylight of 10 hours under the meteorological conditions of Ain Témouchent city (Algeria). The results showed that the present model has a good agreement with the experimental data of the literature. The present desalination system allows to get a daily distillate production around 42.86 l/d and the specific daily distillate production rate is 10.85 kg for each m2 of FPC. Furthermore, concerning the performance parameters, it was found that the solar fractions ranged from 0 to1 and the collector efficiencies was assessed 74%.
solar desalination, direct contact membrane distillation, flat plate solar collector, water treatment, TRNSYS
The authors address the most sincere thanks to the directorate general for scientific research and technological development for it financial support under the FNRSDT/DGRSDT within the framework of ERANETMED3 (Project. ERANETMED3-166 EXTRASEA).
Acevedo L., Uche J., Almo A. D., Círez F., Usón S., Martínez A., Guedea I. (2016). Dynamic simulation of a trigeneration scheme for domestic purposes based on hybrid techniques. Energies, Vol. 9, No. 12, pp. 1013. http://dx.doi.org/10.3390/en9121013
Ashoor B. B., Mansour S., Giwa A., Dufour V., Hasan S. W. (2016). Principles and applications of direct contact membrane distillation (DCMD): A comprehensive review. Desalination, Vol. 398, pp. 222-246. http://dx.doi.org/10.1016/j.desal.2016.07.043
Ayompe L. M., Duffy A., McCormack S. J., Conlon M. (2011). Validated TRNSYS model for forced circulation solar water heating systems with flat plate and heat pipe evacuated tube collectors. Applied Thermal Engineering, Vol. 31, pp. 1536-1542. http://dx.doi.org/10.1016/j.applthermaleng.2011.01.046
Bahmanyar A., Asghari M., Khoobi N. (2012). Numerical simulation and theoretical study on simultaneously effects of operating parameters in direct contact membrane distillation. Chemical Engineering and Processing, Vol. 61, pp. 42-50. http://dx.doi.org/10.1016/j.cep.2012.06.012
Banat F., Jwaied N. (2008). Economic evaluation of desalination by small-scale autonomous solar-powered membrane distillation units. Desalination, Vol. 220, pp. 566-573. http://dx.doi.org/10.1016/j.desal.2007.01.057
Banat F., Jwaied N., Rommel M., Koschikowski J., Wieghaus M. (2007). Desalination by a “compact SMADES” autonomous solar powered membrane distillation unit. Desalination, Vol. 217, pp. 29-37. http://dx.doi.org/10.1016/j.desal.2006.11.028
Bui V. A., Vu L. T. T. M. H. (2010). Modelling the simultaneous heat and mass transfer of direct contact membrane distillation in hollow fibre modules. Journal of Membrane Science, Vol. 353, pp. 85-93. http://dx.doi.org/10.1016/j.memsci.2010.02.034
Cao F., Zhao L., Zhang F., Guo L. J. (2014). Redesign of a water heating system using evacuated tube solar collectors: TRNSYS simulation and techno-economic evaluation. Heat Transfer Engineering, Vol. 35, pp. 556-566. http://dx.doi.org/10.1080/01457632.2013.837369
Chen T. C., Ho C. D., Yeh H. M. (2009). Theoretical modeling and experimental analysis of direct contact membrane distillation. Journal of Membrane Science, Vol. 330, No. 1, pp. 279-287. http://dx.doi.org/10.1016/j.memsci.2008.12.063
Duong H. C., Cooper P., Nelemans B., Cath T. Y., Nghiem L. D. (2015). Optimising thermal efficiency of direct contact membrane distillation by brine recycling for small-scale seawater desalination. Desalination, Vol. 374, pp. 1-9. http://dx.doi.org/10.1016/j.desal.2015.07.009
Eleiwi F., Ghaffour N., Alsaadi A. S., Francis L., Laleg-Kirati T. M. (2016). Dynamic modeling and experimental validation for direct contact membrane distillation (DCMD) process. Desalination, Vol. 384, No. 1, pp. 1-11. http://dx.doi.org/10.1016/j.desal.2016.01.004
Fath H. E. S., Elsherbiny S. M., Hassan A. A., Rommel M., Wieghaus M., Koschikowski J., Vatansever M. (2008). PV and thermally driven small-scale, stand-alone solar desalination systems with very low maintenance needs. Desalination,Vol. 225, pp. 58-69. https://doi.org/10.1016/j.desal.2006.11.029
Izquierdo-Gila M. A., Fern´ andez-Pineda C., Lorenz M. G. (2008). Flow rate influence on direct contact membrane distillation experiments: Different empirical correlations for Nusselt number. Journal of Membrane Science, Vol. 321, pp. 356-363. http://dx.doi.org/10.1016/j.memsci.2008.05.018
Khayet M. (2013). Solar desalination by membrane distillation: Dispersion in energy consumption analysis and water production costs (a review). Desalination, Vol. 308, pp. 89-101. http://dx.doi.org/10.1016/j.desal.2012.07.010
Koschikowski J., Wieghaus M., Rommel M. (2003). Solar thermal-driven desalination plants based on membrane distillation. Desalination, Vol. 156, pp. 295-304. https://doi.org/10.1016/S0011-9164(03)00360-6.
Laissaoui M., Palenzuela P., Eldean M. A. S., Nehari D., Alarcón-Padilla D. C. (2018). Techno-economic analysis of a stand-alone solar desalination plant at variable load conditions. Applied Thermal Engineering, Vol. 133, pp. 659-670. https://doi.org/10.1016/j.applthermaleng.2018.01.074
Lunnon R. G. (1912). The latent heat of evaporation of aqueous salt solutions. Proceedings of the Physical Society of London, pp. 18. http://iopscience.iop.org/1478-7814/25/1/317
Martinez-Diez L., Vazquez-Gonzalez M. I. (1999). Temperature and concentration polarization in membrane distillation of aqueous salt solutions. Journal of Membrane Science, Vol. 159, pp. 265-273. https://doi.org/10.1016/S0376-7388(98)00349-4
Mohan G., Kumar U., Pokhrel M. K., Martin A. (2016). A novel solar thermal polygeneration system for sustainable production of cooling, clean water and domestic hot water in United Arab Emirates: Dynamic simulation and economic evaluation. Applied Energy, Vol. 167, pp. 173-188. http://dx.doi.org/10.1016/j.apenergy.2015.10.116
Pal P., Manna A. K. (2010). Removal of arsenic from contaminated groundwater by solar-driven membrane distillation using three different commercial membranes. water research, Vol. 44, No. 1, pp. 5750-5760. http://dx.doi.org/10.1016/j.watres.2010.05.031
Phattaranawik J., Jiraratananon R., Fane A. G. (2003). Effect of pore size distribution and air flux on mass transport in direct contact membrane distillation. Journal of Membrane Science, Vol. 215, No. 1, pp. 75-85. http://dx.doi.org/10.1016/S0376-7388(02)00603-8
Phattaranawik J., Jiraratananon R., Fane A. G. (2003). Heat transport and membrane distillation coefficientin direct contact membrane distillation. Journal of Membrane Science, Vol. 212, pp. 177-193. https://doi.org/10.1016/S0376-7388(02)00498-2
Qtaishat M., Matsuura T., Kruczek B., Khayet M. (2008). Heat and mass transfer analysis in direct contact membrane distillation. Desalination, Vol. 219, pp. 272-292. http://dx.doi.org/10.1016/j.desal.2007.05.019
Raluy R. G., Schwantes R., Subiela V. J., Peñate B., Melián G., Betancort J. R. (2012). Operational experience of a solar membrane distillation demonstration plant in Pozo Izquierdo-Gran Canaria Island (Spain). Desalination, Vol. 290, pp. 1-13. http://dx.doi.org/10.1016/j.desal.2012.01.003
Schwantes R., Cipollina A., Gross F., Koschikowski J., Pfeifle D., Rolletschek M., Subiela V. (2013). Membrane distillation: solar and waste heat driven demonstration plants for desalination. Desalination, Vol. 323, pp. 93-106. https://doi.org/10.1016/j.desal.2013.04.011
Sharqawy M. H., Lienhard J. H., Zubair S. M. (2010).Thermophysical properties of seawater: a review of existing correlations and data. Desalination and Water Treatment, Vol. 16, pp. 354-380. http://dx.doi.org/10.5004/dwt.2010.1079
Shim W. G., He K., Gray S., Moon I. S. (2015). Solar energy assisted direct contact membrane distillation (DCMD) process for seawater desalination. Separation and Purification Technology, Vol. 143, pp. 94-104. https://doi.org/ 10.1016/j.seppur.2015.01.028
Shukla R, Sumathyn K., Erickson P, Gong J. W. (2013). Recent advances in the solar water heating systems: A review. Renewable and Sustainable Energy Reviews, Vol. 19, No. 1, pp. 173-190. http://dx.doi.org/10.1016/j.rser.2012.10.048
Suárez F., Ruskowitz J. A., Tyler S. W., Childress A. E. (2015). Renewable water: Direct contact membrane distillation coupled with solar ponds. Applied Energy, Vol. 158, pp. 532-539. http://dx.doi.org/10.1016/j.apenergy.2015.08.110
Zhang J. H. (2011). Theoretical and experimental investigation of membrane distillation. Thèse en of Philosophy, Institute for Sustainability and Innovation, School of Engineering & Science. Victoria University.
Zhang J. H., Li J. D., Gray S. (2011). Researching and modelling the dependence of MD flux on membrane dimension for scale-up purpose. Desalination and Water Treatment, Vol. 31, pp. 144-150. http://dx.doi.org/10.5004/dwt.2011.2373