A TRNSYS model of a direct contact membrane distillation (DCMD) system coupled to a flat plate solar collector (FPC)

A TRNSYS model of a direct contact membrane distillation (DCMD) system coupled to a flat plate solar collector (FPC)

Ahmed RemlaouiDriss Nehari Abderrahmane Elmeriah Mohammed Laissaoui 

Smart Structure Laboratory, University Center of Ain-Temouchent 46000 Ain-Temouchent, Algeria

Centre de Développement des Energies Renouvelables, CDER, B.P. 62.Route de l’Observatoire. 16040 Bouzaréah, Algiers, Algeria

Corresponding Author Email: 
donremlaoui@gmail.com
Page: 
335-360
|
DOI: 
https://doi.org/10.3166/JESA.50.335-360
| | | | Citation

OPEN ACCESS

Abstract: 

A promising water desalination system based on direct contact membrane distillation (DCMD) powered by flat plate solar collector (FPC) is proposed in the present study. The carried out system is modelized and simulated by using the commercial code TRNSYS. Doing this was possible by including a novel component able to simulate the physical behavior of the DCMD. The simulation of the solar distillation system has been done during the 21st june along a daylight of 10 hours under the meteorological conditions of Ain Témouchent city (Algeria).  The results showed that the present model has a good agreement with the experimental data of the literature. The present desalination system allows to get a daily distillate production around 42.86 l/d and the specific daily distillate production rate is 10.85 kg for each m2 of FPC. Furthermore, concerning the performance parameters, it was found that the solar fractions ranged from 0 to1 and the collector efficiencies was assessed 74%.

Keywords: 

solar desalination, direct contact membrane distillation, flat plate solar collector, water treatment, TRNSYS

1. Introduction
2. Mathematical modelling
3. System simulation using TRNSYS
4. results and discussion
5. CONCLUSIONS
Acknowledgments

The authors address the most sincere thanks to the directorate general for scientific research and technological development for it financial support under the FNRSDT/DGRSDT within the framework of ERANETMED3 (Project. ERANETMED3-166 EXTRASEA).

  References

Acevedo L., Uche J., Almo A. D., Círez F., Usón S., Martínez A., Guedea I. (2016). Dynamic simulation of a trigeneration scheme for domestic purposes based on hybrid techniques. Energies, Vol. 9, No. 12, pp. 1013. http://dx.doi.org/10.3390/en9121013

Ashoor B. B., Mansour S., Giwa A., Dufour V., Hasan S. W. (2016). Principles and applications of direct contact membrane distillation (DCMD): A comprehensive review. Desalination, Vol. 398, pp. 222-246. http://dx.doi.org/10.1016/j.desal.2016.07.043

 Ayompe L. M., Duffy A., McCormack S. J., Conlon M. (2011). Validated TRNSYS model for forced circulation solar water heating systems with flat plate and heat pipe evacuated tube collectors. Applied Thermal Engineering, Vol. 31, pp. 1536-1542. http://dx.doi.org/10.1016/j.applthermaleng.2011.01.046

Bahmanyar A., Asghari M., Khoobi N. (2012). Numerical simulation  and  theoretical study on simultaneously effects of operating parameters in direct contact membrane distillation. Chemical Engineering and Processing, Vol. 61, pp. 42-50. http://dx.doi.org/10.1016/j.cep.2012.06.012

Banat F., Jwaied N. (2008). Economic evaluation of desalination by small-scale autonomous solar-powered membrane distillation units. Desalination, Vol. 220, pp. 566-573. http://dx.doi.org/10.1016/j.desal.2007.01.057

Banat F., Jwaied N., Rommel M., Koschikowski J., Wieghaus M. (2007). Desalination by a “compact SMADES” autonomous solar powered membrane distillation unit. Desalination, Vol. 217, pp. 29-37. http://dx.doi.org/10.1016/j.desal.2006.11.028

 Bui V. A., Vu L. T. T. M. H. (2010). Modelling the simultaneous heat and mass transfer of direct contact membrane distillation in hollow fibre modules. Journal of Membrane Science, Vol. 353, pp. 85-93. http://dx.doi.org/10.1016/j.memsci.2010.02.034

Cao F., Zhao L., Zhang F., Guo L. J. (2014). Redesign of a water heating system using evacuated tube solar collectors: TRNSYS simulation and techno-economic evaluation. Heat Transfer Engineering, Vol. 35, pp. 556-566. http://dx.doi.org/10.1080/01457632.2013.837369

Chen T. C., Ho C. D., Yeh H. M. (2009). Theoretical modeling and experimental analysis of direct contact membrane distillation. Journal of Membrane Science, Vol. 330, No. 1, pp. 279-287. http://dx.doi.org/10.1016/j.memsci.2008.12.063

Duong H. C., Cooper P., Nelemans B., Cath T. Y., Nghiem L. D. (2015). Optimising thermal efficiency of direct contact membrane distillation by brine recycling for small-scale seawater desalination. Desalination, Vol. 374, pp. 1-9. http://dx.doi.org/10.1016/j.desal.2015.07.009

Eleiwi F., Ghaffour N., Alsaadi A. S., Francis L., Laleg-Kirati T. M. (2016). Dynamic modeling and experimental validation for direct contact membrane distillation (DCMD) process. Desalination, Vol. 384, No. 1, pp. 1-11. http://dx.doi.org/10.1016/j.desal.2016.01.004

Fath H. E. S., Elsherbiny S. M., Hassan A. A., Rommel M., Wieghaus M., Koschikowski J., Vatansever M. (2008). PV and thermally driven small-scale, stand-alone solar desalination systems with very low maintenance needs. Desalination,Vol. 225, pp. 58-69. https://doi.org/10.1016/j.desal.2006.11.029 

Izquierdo-Gila M. A., Fern´ andez-Pineda C., Lorenz M. G. (2008). Flow rate influence on direct contact membrane distillation experiments: Different empirical correlations for Nusselt number. Journal of Membrane Science, Vol. 321, pp. 356-363. http://dx.doi.org/10.1016/j.memsci.2008.05.018

Khayet M. (2013). Solar desalination by membrane distillation: Dispersion in energy consumption analysis and water production costs (a review). Desalination, Vol. 308, pp. 89-101. http://dx.doi.org/10.1016/j.desal.2012.07.010

Koschikowski J., Wieghaus M., Rommel M. (2003). Solar thermal-driven desalination plants based on membrane distillation. Desalination, Vol. 156, pp. 295-304. https://doi.org/10.1016/S0011-9164(03)00360-6.

Laissaoui M., Palenzuela P., Eldean M. A. S., Nehari D., Alarcón-Padilla D. C. (2018). Techno-economic analysis of a stand-alone solar desalination plant at variable load conditions. Applied Thermal Engineering, Vol. 133, pp. 659-670. https://doi.org/10.1016/j.applthermaleng.2018.01.074

Lunnon R. G. (1912). The latent heat of evaporation of aqueous salt solutions. Proceedings of the Physical Society of London, pp. 18. http://iopscience.iop.org/1478-7814/25/1/317

Martinez-Diez L., Vazquez-Gonzalez M. I. (1999). Temperature and concentration polarization in membrane distillation of aqueous salt solutions. Journal of Membrane Science, Vol. 159, pp. 265-273. https://doi.org/10.1016/S0376-7388(98)00349-4

Mohan G., Kumar U., Pokhrel M. K., Martin A. (2016). A novel solar thermal polygeneration system for sustainable production of cooling, clean water and domestic hot water in United Arab Emirates: Dynamic simulation and economic evaluation. Applied Energy, Vol. 167, pp. 173-188. http://dx.doi.org/10.1016/j.apenergy.2015.10.116

Pal P., Manna A. K. (2010). Removal of arsenic from contaminated groundwater by solar-driven membrane distillation using three different commercial membranes. water research, Vol. 44, No. 1, pp. 5750-5760. http://dx.doi.org/10.1016/j.watres.2010.05.031

Phattaranawik J., Jiraratananon R., Fane A. G. (2003). Effect of pore size distribution and air flux on mass transport in direct contact membrane distillation. Journal of Membrane Science, Vol. 215, No. 1, pp. 75-85. http://dx.doi.org/10.1016/S0376-7388(02)00603-8

Phattaranawik J., Jiraratananon R., Fane A. G. (2003). Heat  transport and membrane distillation coefficientin direct contact membrane distillation. Journal of  Membrane Science, Vol. 212, pp. 177-193. https://doi.org/10.1016/S0376-7388(02)00498-2

Qtaishat M., Matsuura T., Kruczek B., Khayet M. (2008). Heat and mass transfer analysis in direct contact membrane distillation. Desalination, Vol. 219, pp. 272-292. http://dx.doi.org/10.1016/j.desal.2007.05.019

Raluy R. G., Schwantes R., Subiela V. J., Peñate B., Melián G., Betancort J. R. (2012). Operational experience of a solar membrane distillation demonstration plant in Pozo Izquierdo-Gran Canaria Island (Spain). Desalination, Vol. 290, pp. 1-13. http://dx.doi.org/10.1016/j.desal.2012.01.003

Schwantes R., Cipollina A., Gross F., Koschikowski J., Pfeifle D., Rolletschek M., Subiela V. (2013). Membrane distillation: solar and waste heat driven demonstration plants for desalination. Desalination, Vol. 323, pp. 93-106. https://doi.org/10.1016/j.desal.2013.04.011

Sharqawy M. H., Lienhard J. H., Zubair S. M. (2010).Thermophysical properties of seawater: a review of existing correlations and data. Desalination and Water Treatment, Vol. 16, pp. 354-380. http://dx.doi.org/10.5004/dwt.2010.1079

Shim W. G., He K., Gray S., Moon I. S. (2015). Solar energy assisted direct contact membrane distillation (DCMD) process for seawater desalination. Separation and Purification Technology, Vol. 143, pp. 94-104. https://doi.org/ 10.1016/j.seppur.2015.01.028 

Shukla R, Sumathyn K., Erickson P, Gong J. W. (2013). Recent advances in the solar water heating systems: A review. Renewable and Sustainable Energy Reviews, Vol. 19, No. 1, pp. 173-190. http://dx.doi.org/10.1016/j.rser.2012.10.048 

Suárez F., Ruskowitz J. A., Tyler S. W., Childress A. E. (2015). Renewable water: Direct contact membrane distillation coupled with solar ponds. Applied Energy, Vol. 158, pp. 532-539. http://dx.doi.org/10.1016/j.apenergy.2015.08.110

Zhang J. H. (2011). Theoretical and experimental investigation of membrane distillation. Thèse en of Philosophy, Institute for Sustainability and Innovation, School of Engineering & Science. Victoria University.

Zhang J. H., Li J. D., Gray S. (2011). Researching and modelling the dependence of MD flux on membrane dimension for scale-up purpose. Desalination and Water Treatment, Vol. 31, pp. 144-150. http://dx.doi.org/10.5004/dwt.2011.2373