Supply of an agile supply chain: A dynamic optimization approach

Supply of an agile supply chain: A dynamic optimization approach

Akram Chibani Xavier Delorme Alexandre Dolgui Henri Pierreval 

École Nationale Supérieure des Mines de Saint-Étienne, LIMOS UMR CNRS 6158 158 cours Fauriel, 42023 Saint-Étienne cedex 2, France

École Nationale Supérieure des Mines de Nantes, IRCCyN UMR CNRS 6597 La Chantrerie, 4 rue Alfred Kastler, 44307 Nantes, France

Institut Français de Mécanique Avancée, LIMOS UMR CNRS 6158 Campus Les Cézeaux, 63175 Aubière cedex, France

Corresponding Author Email: 
delorme@emse.fr
Page: 
749-768
|
DOI: 
https://doi.org/10.3166/JESA.49.749-768
Received: 
N/A
| |
Accepted: 
N/A
| | Citation
Abstract: 

The purpose of this article is to address a dynamic procurement issue under asyn- chronous and repetitive variations over time. The supply chain considered is composed of  two levels (buyer-suppliers) operating in varying environment.

Keywords: 

supply chain, procurement, dynamic optimization, genetic algorithm, agility.

1. Introduction
2. Revue de littérature
3. Un problème d’approvisionnement dans une chaîne logistique flexible
4. Approche de résolution
5. Illustration des expérimentations
6. Conclusion
Remerciements
  References

Benyoucef L., Ding H., Xie X. (2003). Supplier selection problem : selection criteria and methods. Rapport de recherche no 4726. INRIA.

Bichler M., Kalagnanam J. (2005). Configurable offers and winner determination in multi- attribute auctions. European Journal of Operational Research, vol. 160, no 2, p. 380 - 394.

Chan H., Chan F. (2010). Comparative study of adaptability and flexibility in distributed manufacturing supply chains. Decision Support Systems, vol. 48, no 2, p. 331–341.

Chandrashekar T., Narahari Y., Rosa C., Kulkarni D., Tew J., Dayama P. (2007). Auction-based mechanisms for electronic procurement. IEEE Transactions on Automation Science and Engineering, vol. 4, no 3, p. 297-321.

Chen F. (2007). Auctioning supply contracts. Management Science, vol. 53, no 10, p. 1562- 1576.

Chen K. (2012). Procurement strategies and coordination mechanism of the supply chain with one manufacturer and multiple suppliers. International Journal of Production Economics, vol. 138, no 1, p. 125 - 135.

Chibani A., Delorme X., Dolgui A., Pierreval H. (2014). Dealing with variations for a supplier selection problem in a flexible supply chain - A dynamic optimization approach. In Pro- ceedings of the 3rd international conference on operations research and enterprise systems (ICORES 2014), p. 322–327. Angers, Loire Valley, France.

Chibani A., Dolgui A., Delorme X., Pierreval H. (2014). Approvisionnement d’une chaîne logistique agile : une approche d’optimisation dynamique. In Actes de la conférence in- ternationale sur la modélisation, l’optimisation et la simulation : de l’économie linéaire à l’économie circulaire (MOSIM 2014). Nancy, France. (10p)

Cruz C., González J. R., Pelta D. a. (2010). Optimization in dynamic environments: a survey on problems, methods and measures. Soft Computing, vol. 15, no 7, p. 1427–1448.

Devaraj S., Vaidyanathan G., Mishra A. N. (2012). Effect of purchase volume flexibility and purchase mix flexibility on e-procurement performance: An analysis of two perspectives. Journal of Operations Management, vol. 30, no 8, p. 509 - 520.

Goldberg D. E. (1989). Genetic algorithms in search, optimization and machine learning (1st éd.). Boston, MA, USA, Addison-Wesley Longman Publishing Co., Inc.

Lepagnot J., Nakib A., Oulhadj H., Siarry P. (2009). Performance analysis of MADO dynamic optimization algorithm. In Proceedings of the ninth international conference on intelligent systems design and applications (ISDA’09), p. 37-42.

Liu Q., Sun S. X., Wang H., Zhao J. (2011). A multi-agent based system for e-procurement exception management. Knowledge-Based Systems, vol. 24, no 1, p. 49 - 57.

Liu S., Liu C., Hu Q. (2013). Optimal procurement strategies by reverse auctions with stochastic demand. Economic Modelling, vol. 35, p. 430 - 435.

Melnyk S. A., Narasimhan R., DeCampos H. A. (2014). Supply chain design: issues, chal- lenges, frameworks and solutions. International Journal of Production Research, vol. 52, no 7, p. 1887-1896.

Nguyen T. T., Yang S., Branke J. (2012). Evolutionary dynamic optimization: A survey of the state of the art. Swarm and Evolutionary Computation, vol. 6, p. 1-24.

Oh S., Ryu K., Jung M. (2013). Reconfiguration framework of a supply network based on flexibility strategies. Computers and Industrial Engineering, vol. 65, no 1, p. 156 - 165.

Pham L., Teich J., Wallenius H., Wallenius J. (2014). Multi-attribute online reverse auctions: Recent research trends. European Journal of Operational Research, vol. 242, no 1, p. 1 - 9.

Pillac V., Gendreau M., Guéret C., Medaglia A. L. (2013). A review of dynamic vehicle routing problems. European Journal of Operational Research, vol. 225, no 1, p. 1–11.

Talluri S., Narasimhan R., Viswanathan S. (2007). Information technologies for procurement decisions: a decision support system for multi-attribute e-reverse auctions. International Journal of Production Research, vol. 45, no 11, p. 2615-2628.

Tezuka M., Munetomo M., Akama K., Hiji M. (2006). Genetic Algorithm to Optimize Fit- ness Function with Sampling Error and its Application to Financial Optimization Problem. In Proceedings of the ieee congress on evolutionary computation (CEC 2006), p. 81–87. Vancouver, BC, Canada.

Yang J., Xia Y. (2009). Acquisition management under fluctuating raw material prices. Pro- duction and Operations Management, vol. 18, no 2, p. 212–225.