Supply chain tactical planning in an uncertain environment: A dynamic constraint satisfaction problems approach

Supply chain tactical planning in an uncertain environment: A dynamic constraint satisfaction problems approach

Mariem Trojet Fehmi H’Mida Pierre Lopez Patrick Esquirol 

UR MSSDT / ENSIT / Université de Tunis 5 avenue Taha Husein, BP 58, 1008, Tunis, Tunisie

LAAS CNRS, INSA, Toulouse, France

Corresponding Author Email:
20 May 2015
3 November 2015
31 December 2016
| Citation



This work focuses on the supply chain tactical planning problem in an uncertain and turbulent environment. In order to minimize the effect of disturbances due to these uncertainties, we propose an approach based on dynamic constraint satisfaction problems. This is to plan production by searching the best compromise between available decision- making levers for capacity and production costs by adopting a dynamic process, which enables data update at each planning step. Our approach is evaluated by simulation under uncertain data. For this, we have developed various experiments related to the variation of customer demand and resource capacity. All the experiments are carried out by two different methods: a method based on a static CSP and a method based on a dynamic CSP. The performance of a planning solution is reported through stability measurement. Results of experiments confirm the performance of the method based on a dynamic CSP.


supply chain, planning, dynamic constraint satisfaction, stability.

1. Introduction
2. Contexte de l’étude et analyse décisionnelle
3. Approche par satisfaction de contraintes
4. Modélisation du processus de planification dynamique
5. Analyse de performance : démarche méthodologique
6. Expérimentation numérique et évaluation de l’approche
7. Conclusion

A1-Othman W.B.E., Lababidi H.M.S., Alatiqi I.M. and Al-Shayji K. (2008). Supply chain optimization of petroleum organization under uncertainty in market demands and prices. European Journal of Operational Research, $189,822-840$.

Amrani-Zouggar A. (2009). Impact des contrats d'approvisionnement sur la performance de la chaine logistique: Modelisation et simulation. Thèse de doctorat, Université Bordeaux 1, France.

Bellicha A. (1993). Maintenance of solution in a dynamic constraint satisfaction problem In Proceedings of applications of artificial intelligence in Engineering VIII, p. $261-274$

Bessiere C. and Régin J.-C. (2001). Refining the basic constraint propagation algorithm In Proceedings of the ITth Intemational Joint Conference on Artificial Intelligence (IJCAI'OI), Seattle, WA, USA, p. 309-315.

Bessiere C., Régin J.-C., Yap R. and Zhang Y. (2005). An optimal coarse-grained arc consistency algorithm Artificial Intelligence, $2(165), 165-185$ 

Bihlmaier $R,$ Koberstein A. and Obst $R$ (2009). Modeling and optimizing of strategic and tactical production planning in the automotive industry under uncertainty. OR Spectrum, $3: 311-336$

Davis T. (1993). Effective supply chain management. Sloan Management Review, 34: 35-46.

Dechter $R$ and Dechter $A$ ( 1988 ). Belief maintenance in dynamic constraints networks. In Proceedings of the Seventh National Conference on Artificial Intelligence (AAAI'ss), p. $37-42$ 

Durieux-Paris S., Genin P. et Thierry C. (2007). Prise de dicision dans la chaine logistique en mode incertain. Document de synthese du projet GDR MACS.

Durieux S. et Pierreval H. (2003). De la notion de robustesse dans les études de simulation

(2003). Actes de la 4" Conference francophone de modelisation et simulation (MOSIM O3), Toulouse.

Fargier H. Lang J., Martin-Clouaire R et Schiex T. (2002). Traitement de problèmes de decision sous incertitudes par des problemes de satisfaction de contraintes. Revue dimtelligence artificielle, $11(3), 375-398$

Gallbraith J. (1973). Designing complex organizations. Addison-Wesley, Massachusetts. 

Genin P. (2003)-Planification tactique robuste avec usage d'un APS : Proposition d' un mode de gestion par plan de réference. These de Doctorat, École des Mines de Paris, France. 

Haralick R and Elliott G. (1980). Increasing tree search efficiency for constraint satisfaction problems. Artificial Intelligence, 14(3), 263-313. 

Heisig G. (1998). Planning stability under (s,S) inventory control nules. OR Spektrum 20(4): $215-228$

Herrera C. et Thomas A. (2009). Un modèle pour limiter la nervosité et 1'instabilité du programme directeur de production $8^{2}$ Congres international de génie industriel. 'Pagnères de Bigorre, France.

Ho C. (1989). Evaluating the impact of operating environments on MRP system nervousness. Intemational Joumal of Production Research, $27,1115-1135 .$ 

Jensen T. (1993). Measuring and improving planning stability of reorder point lot-sizing policies. International Joumal of Production Economics, $30-31,167-178$ 

Lalami M.E. (2012). Contribution à la résolution de problemes d'optimisation combinatoire: méthodes séquentielles et parallèles. Thèse de doctorat, Université Paul Sabatier, Toulouse, France.

Lee $\mathrm{H}$ L. and Billington $\mathrm{C}$. (1993). Material management in decentralized supply chain. Operations Research, 41(5).

Lim S.J., Jeong S J., Kim K.S. and Park M W. (2006). A simulation approach for productiondistribution planning with consideration given to replenishment policies. The Intemational Joumal of Advanced Mamjfactricing Technology, $27,593-603$. 

Mackworth A.K. (1977). Consistency in networks of relations, Artificial Intelligence, 8(1), 99-118.

Minton S., Johnston MD., Philips A.B. and Laird P. (1992). Minimizing conflicts: a heuristic repair method for constraint satisfaction and scheduling problems. Artificial Intelligence, $^{1} 58,161-205^{-1}$

Mitra K. Gudib RD., Patwardhanb S.E. and Sardara G. (2009). Towards resilient supply chains: Uncertainty analysis using fuzzy mathematical' programming. Chemical Engineering Research and Design, $87,967-981$

Montanari U. (1974). Networks of constraints: Fundamental properties and application to picture processing. Information Science, $7(2), 95-132$

Nadel B. (1989). Constraint Satisfaction Algorithms. Computational Intelligence, 5, 188-299.

Richaud G. (2009). Outillage logiciel pour les problèmes dynamiques. Thèse de doctorat, Ecole nationale supérieure des techniques industrielles et des mines de Nantes, France.

Rota-Frantz K., Bel G. et Thierry C. (2001). Gestion des flux dans les chaines logistiques. In Performance Industrielle et gestion des flux, Hermes Science, p. $153-187$.

Sabin D. and Freuder E. (1994). Contradicting conventional wisdom in constraint satisfaction. Proceedings of the $11^{\text {th }}$ European Conference on Artificial Intelligence (ECAI'$^{\prime} 94$ ), Amsterdam, The Netherlands, p. 125-129.

Sridharan S.V. et Laforge R.L. (2009). An analysis of alternative policies to achieve schedule stability. Journal of Manufacturing and Operations Management, $3,53-73$ 

Stadtler $\mathrm{H}$. and Kilger $\mathrm{C}$. (Ed.) $(2005) .$ Supply chain management and advanced planning. $3^{\circ}$ ed. Springer, Berlin.

Suwanruji P. and Enns S.T. (2006). Evaluating the effects of capacity constraints and demand patterns on supply chain replenishment strategies. International Joumal of Production Research, 44, 4607-4629.

Tayur S., Ganeshan R. and Magazine M. (1999). Quantitative models for supply chain management. Kluwer Academic Publishers.

Verfaillie G. and Jussien N. (2005). Constraint solving in uncertain and dynamic environments: A survey. Constraints, $10(3), 253-281$

Vollmann T.E., Berry W.L. et Whybark D.C. (1997). Manufacturing planning and control systems. $4^{\text {th }}$ ed., McGraw-Hill Book Company, New York, NY.

Yano C.A. et Carlson R.C. (1987). Interaction between frequency of rescheduling and the role of safety stock in material requirements planning systems. International Journal of Production Research, $25,221-232$

Zhang Y. and Yap R. (2001). Making AC-3 an optimal algorithm. Proceedings of the $17^{\text {th}}$ International Joint Conference on Artificial Intelligence $\left(\text {JUAI}^{\prime}$ 01), Seattle, WA, USA, \right. p. $316-321$