OPEN ACCESS
About this study, we would like to existent breast cancer detection revealing procedures, established on the conservative a new spatial fuzzy-technique and K-means technique investigation of breast images. Although, the K-means was previously utilized in breast segmentation of image, along with segmentation of image at overall, this miss the mark to exploit the robust spatial association amongst neighbouring pixels. Spatial fuzzy C-means (sfcm’s) procedure, that is exploit the evidence of spatial accurately and generate extraordinary breast image segmentation. To check the segmentation performance of spatial fuzzy C-means, K-means and expectation maximization methods, we have used 5 ground truth images. The outcomes of segmentation that are demonstrated extra precise segmentation with the sfcm’s matched with that of K-means and expectation and maximization methods are offered statistically and graphically.
SFCM, mammogram image, fuzzy, K-means, Em algorithm
Abo-Eleneen Z. A., Gamil A. (2013). A novel statistical approach for detection of suspicious regions in digital mammogram. Journal of the Egyptian Mathematical Society, Vol. 21, No. 2, pp. 162-168. https://doi.org/10.1016/j.joems.2013.02.002
Abuchaiba I. S. I., Elfarra B. K. (2013). New feature extraction method for mammogram CAD diagnosis. International Journal of Signal Processing, Vol. 6, No. 1.
Basheer N. M., Mohammed M. H. (2013). Segmentation of breast masses in digital mammograms using adaptive median filtering and texture analysis. Int. J. Recent Technol. Eng. (IJRTE), Vol. 2, No. 1, pp. 2277-3878.
Behrenbruch C., Marias K., Armitage P. (2001). Prone-supine breast MRI registration for surgical visualisation” medical imaging understanding and analysis. Unv of Birmingham. http://www.cs.bham.ac.uk/research/proceedings/miua2001/
DeWyngaert J. K., Noz M. E., Ellerin B., Kramer E. L., Maguire Jr G. Q., Zeleznik M. P. (2004). Procedure for unmasking localization information from prostascint scans for prostate radiation therapy treatment planning. Int J Radiat Oncol Biol Phys, Vol. 60, No. 2, pp. 654-662. https://doi.org/10.1016/j.ijrobp.2004.05.034
Dinsha D. (2014). Breast tumor Segmentation and classification using SVM and Bayesian from thremogram images. Unique Journal of Engineering and Advanced Sciences, Vol. 2, pp. 147-151.
Eubank W. B., Mankoff D. A., Vesselle H. J., Eary J. F., Schubert E. K., Dunnwald L. K., Lindsley S. K., Gralow J. R., Austin-Seymour M. M., Ellis G. K., Livingston R. B. (2002). Detection of locoregional and distant recurrences in breast cancer patients by using FDG PET. Radio Graphics, Vol. 22, No. 1, pp. 5-17. https://doi.org/10.1148/radiographics.22.1.g02ja055
Hathaway P. B., Mankoff D. A., Maravilla K. R., Austin-Seymour M. M., Ellis G. K., Gralow J. R., Cortese A. A., Hayes C. E., Moe R. E. (1999). Value of combined FDG PET and MR imaging in the evaluation of suspected recurrent local-regional breast cancer: Preliminary experience. Radiology, Vol. 210, pp. 807-814. https://doi.org/10.1148/radiology.210.3.r99mr43807
Inderpal S., Dinesh K. (2014). A review on different image segmentation techniques. IJAR, Vol. 4.
Khokher M. R., Ghafoor A., Siddiqui A. M. (2012). Image segmentation using multilevel graph cuts and graph development using fuzzy rule-based system. IET Image Processing, Vol. 7, No. 3, pp. 201-211. https://doi.org/10.1049/iet-ipr.2012.0082
Liberman L., Morris E. A., Lee M. J., Kaplan J. B., LaTrenta L. R., Menell J. H., Abramson A. F., Dashnaw S. M., Ballon D. J., Dershaw D. D. (2002). Breast lesions detected on MR imaging: Features and positive predictive value. AJR, Vol. 179, No. 1, pp. 171-178. https://doi.org/10.2214/ajr.179.1.1790171
Maguire Jr G. Q., Jaeger J., Farde L., Noz M. E. (1987). Use of graphical techniques for error evaluation. Journal of Medical Systems, Vol. 11, pp. 277-286. https://doi.org/10.1007/BF00994013
Maguire Jr G.Q., Noz M. E., Rusinek H., Jaeger J., Kramer E. L., Sange R J. J., Smith G. (1991). Graphics applied to image registration. IEEE Computer Graphics and Applications, Vol. 11, No. 2, pp. 20-28. https://doi.org/10.1109/38.75587
Noz M. E., Maguire Jr G. Q., Zeleznik M. P., Kramer E. L., Mahmoud F., Crafoord J. (2001). A versatile functional-anatomic image fusion method for volume data sets. Journal of Medical Systems, Vol. 25, pp. 297-307. https://doi.org/10.2147/jms.32412
Pfluger T., Vollmar C., Wismüller A., Dresel S., Berger F., Suntheim P., Leinsinger G., Hahn K. (2000). Quantitative comparison of automatic and interactive methods for MRI-SPECT image registration of the brain based on 3-dimensional calculation of error. Journal of Nuclear Medicine, Vol. 41, pp. 1823-1829.
Schettino C. J., Noz M. E., Kramer E., Taneja S., Lepor H. (2000). Impact of image fusion of the 111 in Capromab pendetide with MR or CT in patients with recurrent prostate CA. Journal of Nuclear Medicine, Vol. 42, pp. 294P. https://doi.org/10.2874/jnm.234714
Shanthi S., Bhaskaran V. M. (2014). Modified artificial bee colony based feature selection: A new method in the application of mammogram image classification. International Journal of Science, Engineering and Technology Research, Vol. 3, No. 6.
Shraddha T., Krishna K., Singh B. K., Singh R. P. (2012). Image segmentation: A review. International Journal of Computer Science and Management Research, Vol. 1, No. 4.
Teifke A., Hlawatsch A., Beier T., Werner Vomweg T., Schadmand S., Schmidt M., Lehr H., Thelen M. (2002). Undected malignancies of the breast: Dynamic contrast-enhanced MR imaging at 1.0 T. Radiology, Vol. 224, pp. 881-888. http://dx.doi.org/10.1148/radiol.2243010547