OPEN ACCESS
The present study is based on the Least Squares Support Vector Machines (LS-SVM) approach for simulating the boronizing kinetics of Armco iron. This work adopts the Least Square Support Vector Machine for the growth kinetics of FeB and Fe2B layers. This approach uses the regression technique with the theory of statistical learning LS-SVM has been used to simulate the thickness of each boride layer (FeB or Fe2B), the input data of the simulation model are the process temperature and the treatment time. The LS-SVM results are compared to experimental data. The good agreement between the two results confirms the validity of the mathematical model. After the validation, the root mean square error and coefficients of determination are calculated to achieve a good performance and a better accuracy. In this work, the comparison results in a value of root mean square error of 0.14 µm for Fe2B and 0.16 µm for FeB. Furthermore, an equation has been proposed to estimate the thickness of boronized layer as a function of time and temperature using the present model.
LS-SVM, prediction, boronizing, model, simulation
Allaoui O., Bouaouadja N., Saindernan G. (2006). Characterization of boronized layers on a XC38 steel. Surface and Coatings Technology, Vol. 201, pp. 3475-3482. https://doi.org/10.1016/j.surfcoat.2006.07.238
Anandhi A., Srinivas V. V., Nanjundiah R. S., Nagesh Kumar D. (2008). Downscaling precipitation to river basin in india for ipcc sres scenarios using support vector machine. International Journal of Climatology, Vol. 28, pp. 401-420. https://doi.org/10.1002/joc.1529
Bouaziz S. A., Boudaoud N., Zanoun A. (2009). Boruration thermochimique d'un acier C38 dans un bain de sels borax-SiC. Matériaux et Techniques, Vol. 97, pp. 253-259. https://doi.org/10.1051/mattech/2009036
Brakman C. M. , Gommers A. W. J., Mittemeijer E. J. (1989). Boronizing of Fe and Fe-C, Fe-Cr and Fe-Ni alloys: Boride-layer growth kinetics. J. Mater. Res., Vol. 4, pp. 1354-1370. https://doi.org/10.1557/JMR.1989.1354
Campos I., Islas M., González E., Ponce P., Ramirez G. (2006). Use of fuzzy logic for modeling the growth of Fe2B boride layers during boronizing. Surf. Coat. Tech., Vol. 201, pp. 2717-2723. https://doi.org/10.1016/j.surfcoat.2006.05.016
Campos I., Islas M., Ramirez G., Villa-Velazquez C., Mota C. (2007). Growth kinetics of borided layers: Artificial neural network and least square approaches. Appl. Surf. Sci., Vol. 253, pp. 6226-6231. https://doi.org/10.1016/j.apsusc.2007.01.070
Campos I., Ortiz-Domínguez M., Bravo-Bárcenas O., Doñu-Ruiz M. A., Bravo-Bárcenas D., Tapia-Quintero C., Jiménez-Reyes M. Y. (2010). Formation and kinetics of FeB/Fe2B layers and diffusion zone at the surface of AISI 316 borided steels. Surface and Coatings Technology, Vol. 205, pp. 403-412. https://doi.org/10.1016/j.surfcoat.2010.06.068
Campos I., Oseguera J., Figueroa U., Garcia J. A., Bautista O., Keleminis G. (2003). Kinetic study of boron diffusion in the paste-boriding process. Mater. Sci. Eng., A, Vol. 352, pp. 261-265. https://doi.org/10.1016/S0921-5093(02)00910-3
David V., Sánchez A. (2003). Advanced support vector machines and kernel methods. In Neurocomputing, Vol. 55, pp. 5-20. https://doi.org/10.1016/S0925-2312(03)00373-4
Genel K., Ozbek I., Kurt A., Bindal C. (2002). Boriding response of AISI W1 steel and use of artificial neural network for prediction of borided layer properties. Surf. Coat. Tech., Vol. 160, pp. 38-43. https://doi.org/10.1016/S0257-8972(02)00400-0
Jain V., Sundararajan G.(2002). Influence of the pack thickness of the boronizing mixture on the boriding of steel. Surf. Coat. Tech., Vol. 149, pp. 21-26. https://doi.org/10.1016/S0257-8972(01)01385-8
Keddam M. (2004). A kinetic model for the borided layers by the paste-boriding process. Appl. Surf. Sci., Vol. 236, pp. 451-455. https://doi.org/10.1016/j.apsusc.2004.05.141
Keddam M., Chentouf S. M. (2005). A diffusion model for describing the bilayer growth (FeB/Fe2B) during the iron powder-pack boriding. Appl. Surf. Sci., Vol. 252, pp. 393-399. https://doi.org/10.1016/j.apsusc.2005.01.016
Keddam M., Ortiz-Dominguez M., Campos-Silva I., Martinez-Trinidad J. (2010). A simple model for the growth kinetics of Fe2B iron boride on pure iron substrate. Appl. Surf. Sci., Vol. 256, pp. 3128-3132. https://doi.org/10.1016/j.apsusc.2009.11.085
Kubaschewski O. (1982). Fe-B Iron–Boron of volume Iron-Binary phase diagrams. Springer-Verlag, pp. 15-18. https://doi.org/10.1007/978-3-662-08024-5_8
Matuschka A. G. (1980). Boronizing, Hayden and Son Inc, Philadelphia.
Mebarek B., Bouaziz S. A., Zanoun A. (2012). Simulation model to study the thermochemical boriding of stainless steel “AISI 316”(X5CrNiMo17-12-2). Matériaux et Techniques, Vol. 100, pp. 167-175. https://doi.org/10.1051/mattech/2012009
Mebarek B., Madouri D., Zanoun A., Belaidi A.(2015). Simulation model of monolayer growth kinetics of Fe2B phase. Matériaux & Techniques, Vol. 103, pp. 703-709. https://doi.org/10.1051/mattech/2015058
Mebarek B., Zanoun A., Rais A. (2016). Comparaison de deux approches numériques pour le traitement de boruration thermochimique de l’acier XC38. Metall. Res. Technol., Vol. 113, pp. 104-114. https://doi.org/10.1051/metal/2015046
Mishra S., Choubey V., Pandey S. K., Shukla J. P. (2014). An Efficient Approach of Support Vector Machine for Runoff Forecasting. International Journal of Scientific & Engineering Research, Vol. 5, pp. 158-168.
Ozbek I., Bindal C. (2011). Kinetics of borided AISI M2 high speed steel. Vacuum, Vol. 86, pp. 391-397. https://doi.org/10.1016/j.vacuum.2011.08.004
Ozdemir O., Omar M. A., Usta M., Zeytin S., Bindal C., Ucisik A. H. (2009). An investigation on boriding kinetics of AISI 316 stainless steel. Vacuum, Vol. 83, pp. 175-179. https://doi.org/10.1016/j.vacuum.2008.03.026
Steinwart I., Christmann A. (2008). Support vector machine. Springer, New York. https://doi.org/10.1007/978-0-387-77242-4
Suykens J. A., Vandewalle J., De Moor B. (2001). Optimal control by least squares support vector machines. Neural Networks, Vol. 14, pp. 23-35. https://doi.org/10.1016/S0893-6080(00)00077-0
Suykens J. A. K., Vandewalle J.(1999). Least squares support vector machine classifiers. Neural Processing Letters, Vol. 9, pp. 293-300. https://doi.org/10.1023/A:1018628609742
Suykens J. A. K., De Brabanter J., Lukas L., Vandewalle J. (2002). Weighted least squares support vector machines: robustness and sparse approximation. Neuro Computing, Vol. 48, pp. 85-105. https://doi.org/10.1016/S0925-2312(01)00644-0
Tian S. W., Wang C. M., Zhang Z. M. (2017). A hybrid method of debris flow velocity estimation based on empirical equation. International Journal of Heat and Technology, Vol. 35, No. 1, pp. 147-152. https://doi.org/10.18280/ijht.350120
Tripathi S., Srinivas V. V., Nanjundiah R. S. (2006). Downscaling of precipitation for climate change scenarios: a support vector machine approach. Journal of Hydrology, Vol. 330, pp. 621-640. https://doi.org/10.1016/j.jhydrol.2006.04.030
Ueda A., Mizukoshi T., Demizu K., Sone T., Ikenaga A., Kawamoto M. (2000). Boriding of nickel by the powder-pack method. Surf. Coat. Technol., Vol. 126, pp. 25-30. https://doi.org/10.1016/S0257-8972(00)00517-X
Vapnik V. N. (2005). Statistical Learning Theory, Wiley, New York, USA.
Wang J., Neskovic P., Cooper L. N. (2005). Training data selection for support vector machines. In: Wang L., Chen K., Ong Y.S. (eds) Advances in Natural Computation. ICNC 2005. Lecture Notes in Computer Science, Vol. 3610. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11539087_71