Exploring intentions on electronic health records retrieval

Exploring intentions on electronic health records retrieval

Rodrigo Bonacin Julio Cesar dos Reis  Edemar Mendes Perciani  Olga Nabuco 

CTI Renato Archer Campinas São Paulo, Brazil

Institute of Computing University of Campinas Campinas São Paulo, Brazil

Faculty of Campo Limpo Paulista Campo Limpo Paulista São Paulo, Brazil

Corresponding Author Email: 
rodrigo.bonacin@cti.gov.br olga.nabuco@cti.gov.br; jreis@ic.unicamp.br; edemar.mendes.perciani@gmail.com
Page: 
111-135
|
DOI: 
https://doi.org/10.3166/ISI.23.2.111-135
Received: 
| |
Accepted: 
| | Citation
Abstract: 

Despite the potential benefits of Electronic Health Records (EHRs), health care professionals face difficulties in the selection of relevant documents in huge repositories during collaborative activities. In this article, we investigate the development of an innovative Information Retrieval (IR) and sharing mechanism that explores the formal representation of inten- tions in EHRs. To this end, this research relies on Organizational Semiotics and Speech Acts Theory. We defined an algorithm to filter and sort search results relying on intention classes explicitly declared as query parameters in the search mechanism. As our main contribution, we developed the SiRBI IR system for supporting group knowledge sharing through EHRs. To evaluate the proposal, we conducted an experimental study using a realworld EHR repository in two search scenarios, which involve an interdisciplinary group. The obtained results demonstrated the effectiveness of the solution.

Keywords: 

information retrieval, electronic health records, information sharing, query expansion, intentions, illocutions, speech acts theory

1. Introduction
2. Background
3. Method and Algorithm Conceptualization
4. Experimental Evaluation
5. Discussion
6. Conclusion
Acknowledgements

This work is supported by the São Paulo Research Foundation (FAPESP) (Grant#2017/02325-5)4.

  References

Alyami M. A., Almotairi M., Aikins L., Yataco A. R., Song Y. T. (2017, May). Managing personal health records using meta-data and cloud storage. In 2017 ieee/acis 16th international conference on computer and information science (icis), p. 265-271.

Apperly I. (2010). Mindreaders: The cognitive basis of "theory of mind". Taylor & Francis.

Aroma R. J., Kurian M. (2013, March). A semantic web: Intelligence in information retrieval. In 2013 ieee international conference on emerging trends in computing, communication and nanotechnology (iceccn), p. 203-206.

Asai H., Yamana H. (2014). Intelligent ink annotation framework that uses user’s intention in electronic document annotation. In Proceedings of the ninth acm international conference on interactive tabletops and surfaces, p. 333–338. New York, NY, USA, ACM.

Austin J. (1962). How to do things with words? Clarendon Press, London.

Bhatt M., Rahayu W., Soni S. P., Wouters C. (2009). Ontology driven semantic profiling and retrieval in medical information systems. Web Semantics: Science, Services and Agents on the World Wide Web, Vol. 7, No. 4, p. 317 - 331. (Semantic Web challenge 2008)

Bodenreider O. (2004). The unified medical language system (umls): integrating biomedical terminology. Nucleic Acids Research, Vol. 32, No. suppl_1, p. D267-D270.

Bonacin R., Reis J. C. D., Hornung H., Baranauskas M. C. C. (2012). An ontological model for representing pragmatic aspects of collaborative problem solving. In 2012 ieee 21st international workshop on enabling technologies: Infrastructure for collaborative enterprises, p. 444-449.

Chawla S., Bedi P. (2008, Aug). Query expansion using information scent. In 2008 international symposium on information technology, Vol. 3, p. 1-8.

Chen T.-L., Chung Y.-F., Lin F. Y. (2012, June). A study on agent-based secure scheme for electronic medical record system. J. Med. Syst., Vol. 36, No. 3, p. 1345–1357.

Cogley J., Stokes N., Carthy J. (2013). Exploring the effectiveness of medical entity recognition for clinical information retrieval. In Proceedings of the 7th international workshop on data and text mining in biomedical informatics, p. 3–4. New York, NY, USA, ACM.

Dong H., Hussain F. K., Chang E. (2008, Feb). A survey in semantic search technologies. In 2008 2nd ieee international conference on digital ecosystems and technologies, p. 403-408.

Forcher B., Roth-Berghofer T., Agne S., Dengel A. (2014). Intuitive justifications of medical semantic search results. Engineering Applications of Artificial Intelligence, Vol. 30, p. 1 -17.

Gómez M. Montes-y, Gelbukh A. F., López-López A. (1999). Document title patterns in information retrieval. In V. Matousek, P. Mautner, J. Ocelíková, P. Sojka (Eds.), Text, speech and dialogue: Second international workshop, tsd’99 plzen, czech republic, september 13–17, 1999 proceedings, p. 372–375. Berlin, Heidelberg, Springer Berlin Heidelberg.

Guha R., McCool R., Miller E. (2003). Semantic search. In Proceedings of the 12th international conference on world wide web, p. 700–709. New York, NY, USA, ACM.

Gupta V., Garg N., Gupta T. (2012, Feb). Search bot: Search intention based filtering using decision tree based technique. In 2012 third international conference on intelligent systems modelling and simulation, p. 49-54.

Gurulingappa H., Müller B., Hofmann-Apitius M., Fluck J. (2011). A semantic platform for information retrieval from e-health records. In Proceedings of the twentieth text retrieval conference, TREC 2011, gaithersburg, maryland, usa, november 15-18, 2011.

Hesse B. W., Connell M. O., Augustson E. M., Chou W.-Y. S., Shaikh A. R., Rutten L. J. F. (2011, jul). Realizing the promise of web 2.0: Engaging community intelligence. Journal of Health Communication, Vol. 16, No. sup1, p. 10–31.

Hesse B. W., Hansen D., Finholt T., Munson S., Kellogg W., Thomas J. C. (2010, Nov). Social participation in health 2.0. Computer, Vol. 43, No. 11, p. 45-52.

Hildebrand M., Ossenbruggen J. V., Hardman L. (2007). An analysis of search-based user interaction on the semantic web.

Hwang M., Kim P., Choi D. (2011, June). Information retrieval techniques to grasp user intention in pervasive computing environment. In 2011 fifth international conference on innovative mobile and internet services in ubiquitous computing, p. 186-191.

Khan A. S., Fleischauer A., Casani J., Groseclose S. L. (2010). The next public health revolution: Public health information fusion and social networks. American Journal of Public Health, Vol. 100, No. 7, p. 1237-1242.

Koopman B., Zuccon G., Bruza P., Sitbon L., Lawley M. (2016, Apr 01). Information retrieval as semantic inference: a graph inference model applied to medical search. Information Retrieval Journal, Vol. 19, No. 1, p. 6–37.

Kreuzthaler M., Daumke P., Schulz S. (2015). Semantic retrieval and navigation in clinical document collections. Studies in health technology and informatics, Vol. 212, p. 9-14.

Laforest F., Tchounikine A. (1999). Indexing semi-structured documents for context-based information retrieval in a medical information system. In Proceedings. tenth international workshop on database and expert systems applications. dexa 99, p. 593–597.

Lévy P. (2001). Cyberculture. University of Minnesota Press.

Liaw S.-T., Taggart J., Yu H., Lusignan S. de, Kuziemsky C., Hayen A. (2014). Integrating electronic health record information to support integrated care: Practical application of ontologies to improve the accuracy of diabetes disease registers. Journal of Biomedical Informatics, Vol. 52, p. 364 - 372.

Liu K. (2000). Semiotics in information systems engineering. Cambridge University Press. Liu K., Li W. (2014). Organisational semiotics for business informatics. Taylor & Francis.

Mendoza M., Baeza-Yates R. (2008, Oct). A web search analysis considering the intention behind queries. In 2008 latin american web conference, p. 66-74.

Morris C. (1937). Logical positivism, pragmatism and scientific empiricism. Hermann et cie.

Noor S., Martinez K. (2009). Using social data as context for making recommendations: An ontology based approach. In Proceedings of the 1st workshop on context, information and ontologies, p. 7:1–7:8. New York, NY, USA, ACM.

Peirce C. S. (1931–1935). Collected papers. Cambridge, Harvard Universit Press.

Perez-Rey D., Jimenez-Castellanos A., Garcia-Remesal M., Crespo J., Maojo V. (2012, Apr 05). Cdapubmed: a browser extension to retrieve ehr-based biomedical literature. BMC Medical Informatics and Decision Making, Vol. 12, No. 1, p. 29.

Popescu M. (2010, July). An ontological fuzzy smith-waterman with applications to patient retrieval in electronic medical records. In International conference on fuzzy systems, p. 1-6.

Pruski C.,Wisniewski F. (2012). Efficient medical information retrieval in encrypted electronic health records. Studies in health technology and informatics, Vol. 180, p. 225-9.

Reis J. C. dos, Bonacin R., Baranauskas M. C. C. (2017). Recognizing intentions in free text messages: Studies with portuguese language. In Ieee 26th international conference on enabling technologies: Infrastructure for collaborative enterprises, p. 302-307.

Reis J. C. dos, Bonacin R., Perciani E. M. (2016a). Intention-based information retrieval of electronic health records. In Ieee 25th international conference on enabling technologies: Infrastructure for collaborative enterprises (wetice), p. 217-222.

Reis J. C. dos, Bonacin R., Perciani E. M., Baranauskas M. C. C. (2016b). Analysis and representation of illocutions from electronic health records. In M. C. C. Baranauskas, K. Liu, L. Sun, V. P. d. A. Neris, R. Bonacin, K. Nakata (Eds.), Socially aware organisations and technologies., p. 209–218. Cham, Springer International Publishing.

Searle J. R. (1969). Speech acts: An essay in the philosophy of language. Cambridge, London, Cambridge University Press.

Sharef N. M., Madzin H. (2012, March). Ims: An improved medical retrieval model via medical-context aware query expansion and comprehensive ranking. In 2012 international conference on information retrieval knowledge management, p. 214-218.

Sweet L. E., Moulaison H. L. (2013, Dec 01). Electronic health records data and metadata: Challenges for big data in the united states. Big Data, Vol. 1, No. 4, p. 245-251. Retrieved from https://doi.org/10.1089/big.2013.0023

Tang X., Liu K., Cui J., Wen F., Wang X. (2012, July). Intentsearch: Capturing user intention for one-click internet image search. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 34, No. 7, p. 1342-1353.

Tawfik A. A., Kochendorfer K. M., Saparova D., Ghenaimi S. A., Moore J. L. (2011, June). Using semantic search to reduce cognitive load in an electronic health record. In Ieee 13th international conference on e-health networking, applications and services, p. 181-184.

Totelin L. (2009). Hippocratic recipes: Oral and written transmission of pharmacological knowledge in fifth- and fourth-century greece. Brill.

Zheng K., Mei Q., Hanauer D. A. (2011). Collaborative search in electronic health records. Journal of the American Medical Informatics Association, Vol. 18, No. 3, p. 282-291.

Zinglé H. (2006). Modelling knowledge with zdoc for the purposes of information retrieval. In M. Ali, R. Dapoigny (Eds.), Proceedings of 19th international conference on industrial, engineering and other applications of applied intelligent systems, iea/aie 2006, annecy, france, june 27-30, 2006. proceedings, p. 1053-1058. Springer Berlin Heidelberg.