A Lightweight Numerical Model of Railway Track to Predict Mechanical Stress State in the Rail

A Lightweight Numerical Model of Railway Track to Predict Mechanical Stress State in the Rail

Maryam El Moueddeb François Louf Pierre-Alain Boucard Franck Dadié Gilles Saussine Danilo Sorrentino

LMT (ENS Paris-Saclay/CNRS/Université Paris-Saclay), France

SNCF Réseau, France

Available online: 
| Citation



A new approach is conducted within SNCF Réseau to redefine and improve the current procedure behind rolling stocks admission. A perspective to update computation rules for traffic conditions is to consider track fatigue issues. In this sense, the study aims to provide a better knowledge of stress state induced by moving vehicles in rails through a lightweight numerical model of the track. Specifically, the track model consists of a two-layer discrete support model in which the rail is considered as a beam and sleepers are punctual masses. The rail-pads and ballast layer are modelled as spring/damper couples. Considering the track’s vertical response, the study intends to quantify the impact of the vehicle’s dynamic overload on the track response and verify the possibility of these overloads to excite track vibration modes. A first study considering constant moving loads already shows negligible effect of track inertia forces due to high track stiffness and damping. This justifies the prediction of mechanical stress state in the rail for fatigue issues through a static model of the track and a simplified dynamic model for the vehicle.


dynamic response, finite element method, moving load, simplified model, railway tracks


[1] Commission de circulation des machines (SNCF), Rapport de la commission Demaux, 1944.

[2] SNCF, Règles d’admission des matériels roulants sur le RFN en fonction de la sollicitation de la voie, RFN-IG-MR 00 A-00-n 001, 2013.

[3] Guerin, N., Approche expérimentale et numérique du comportement du ballast des voies ferrées. PHD. Matériaux. Ecole Nationale des Ponts et Chaussées, 1996.

[4] Nguyen, V.H., Comportement dynamique de structures non-linéaires soumises à des charges mobiles. PHD. Ecole Nationale des Ponts et Chaussées, 2002.

[5] Al Shaer, A., Analyse des déformations permanentes des voies ferrées ballastéesApproche dynamique. PHD. ENPC, 2005.

[6] Sayeed, M. A. & Shahin, M. A., Three-dimensional numerical modelling of ballasted railway track foundations for high-speed trains with special reference to critical speed. Transportation Geotechnics, 6, pp. 55–65, 2016.

[7] Fernandes, V.A., Numerical analysis of nonlinear soil behavior and heterogeneity effects on railway track response. PHD. Ecole Centrale Paris, 2014.

[8] Rhayma, N., Contribution à l’évolution des méthodologies de caractérisation et d’amélioration des voies ferrées. PHD. Université Blaise Pascal – Clermont-Ferrand II, 2010.

[9] http://www-cast3m.cea.fr

[10] Xie, G. & Iwnicki, S. D., Simulation of wear on a rough rail using a time-domain wheel–track interaction model. Wear, 265(11–12), pp. 1572–1583, 2008.

[11] Knothe, K. L. & Grassie, S. L., Modelling of railway track and vehicle/track interaction at high frequencies. Vehicle system dynamics, 22(3–4), pp. 209–262, 1993.

[12] Lei, X. & Noda, N. A., Analyses of dynamic response of vehicle and track coupling system with random irregularity of track vertical profile. Journal of Sound and Vibration, 258(1), pp. 147–165, 2002.

[13] Newmark, N. M., A method of computation for structural dynamics. Journal of the Engineering Mechanics Division, Proceeding of American Society of Civil Engineers, pp. 67–94, 1959.

[14] Chen, Y. H., Huang, Y. H. & Shih, C.T., Response of an infinite Timoshenko beam on a viscoelastic foundation to a harmonic moving load. Journal of sound and Vibration, 241(5), pp. 809–824, 2001.

[15] Stojanović, V., Kozić, P. & Petković, M. D., Dynamic instability and critical velocity of a mass moving uniformly along a stabilized infinity beam. International Journal of Solids and Structures, 108, pp. 164–174, 2017.