Modelling Integrated Extreme Hydrology

Modelling Integrated Extreme Hydrology

Francisco Padilla J-Horacio Hernández Ricardo Juncosa Pablo R.-Vellando 

ETS de Ingenieros de Caminos, University of A Coruña, Spain, and Wessex Institute of Technology, UK

Ingeniería Geomática e Hidráulica, University of Guanajuato, Mexico

31 August 2016
| Citation



The present research is concerned with some numerical developments and practical application of a physically based numerical model FreshWaterSheds that incorporates a finite element solution to the steady/transient problems of the joint ground/surface fresh/salt water flows in inland and coastal regulated watersheds. The proposed model considers surface and groundwater interactions to be 2-D horizontally distributed and depth-averaged through a diffusive wave approach. Infiltration rates, overland flows and evapotranspiration processes are considered by diffuse discharge from surface water, unsaturated subsoil and groundwater table. New improvements also allow for the management of surface water flow control through the capacity of diversion on flooding zones of catchment areas, as well as on river beds, spillways and outflow operations of floodgates in weirs and dams of reservoirs. Practical application regards the flooding hazard of Aznalcóllar toxic spillages. This flooding disaster was caused by the sequential ruptures of the dikes of two mining residual reservoirs of a pyrite mine, releasing about 10·106 m3 of contaminated wastewater and mining sludge onto the Guadiamar River. The numerical model was adapted to the wastewater and sludge properties of both sudden spillages, as well as to the river bed, the flooded zones and the underneath alluvial aquifer. The model simulation and calibration were made during the date of this hydrological hazard to the likely discharges and dual hydrograph produced by the sudden twofold failure of both reservoirs.


extreme hydrology, finite elements, flood routing, integrated surface/subsurface flows, numerical modelling, wastewater


[1] Abbot, M.B. & Refsgaard, J.C., Distributed Hydrological Modelling. Water Science and Technology Library, Kluver Academic Publishers: Dordrecht, p. 22, 1996.

[2] Burnash, R.J.C., Ferral, R.L., McGuire, R.A. & McGuire, R.A., A generalized stream flow simulation system. Conceptual modeling for digital computer. Joint developed by Federal-State River Forecast Center and Nacional Weather Service. Dep. Water Resources (California), 1973.

[3] Ross, M., Said, A., Torut, A., Tara, K. & Geurink, J., A new discretization scheme for integrated surface and groundwater modelling. In: Integrated Water Resource Management, ed. T.V. Hromadka, American Institute of Hydrology: Las Vegas, Nevada, pp. 143–156, 2005.

[4] Sophocleous, M. & Perkins, S.P., Methodology and application of combined watershed and ground-water models in Kansas. Journal of Hydrology, 236(3–4), pp. 185–201, 2000.

[5] DHI. MIKE BASIN. A tool river planning and management. Report, Danish Hydr. Inst., Horsholm, Denmark, 1997.

[6] Graham, D.N. & Butts, M.B., Flexible, integrated watershed modelling with MIKE SHE. In: Watershed Models, eds. V.P. Singh & D.K. Frevert, CRC Press: Boca Raton, pp. 245–272, 2005.

[7] Camporese, M., Paniconi, C., Putti, M. & Orlandini, S., Surface-subsurface flow modeling with path-based runoff routing, boundary condition-based coupling, and assimilation of multisource observation data. Water Resources Research, 46(2), 2010.

[8] Padilla, F., Méndez, A., Fernández, R. & Vellando, P., Numerical modelling of surfacewater/groundwater flows for freshwater/saltwater hydrology: the case of the alluvial coastal aquifer of the Low Guadalhorce River, Malaga, Spain. Environmental Geology, 55(1), pp. 215–226, 2008.

[9] Padilla, F., Hernández, H., Juncosa, R. & Vellando, P., A numerical solution for the integrated analysis of water resources management: Application to the Mero River watershed – La Coruña, Spain”. Journal of Water Resource and Protection, 7, pp. 815–829, 2015.

[10] Hernández, J.H., Padilla, F., Juncosa, R., R-Vellando, P. & Fernández, A., A numerical solution to integrated water flows: Application to the flooding of an open pit mine at the Barcés River catchment – La Coruña, Spain. Journal of Hydrology, 472–473, pp. 328–339, 2012.

[11] Padilla, F. & Cruz-Sanjulián, J., Modeling seawater intrusion with open boundary conditions. Ground Water, 35(4), pp. 702–712, 1997.

[12] Cattaneo, M.C., Sur une forme de l’équation de la chaleur limitant le paradoxe d’une propagation instantanée. Comptes Rendus de L’Académie de Sciences: Serie I-Mathematics, 247, pp. 431–433, 1958.

[13] Saad, Y. & Schultz, M.H., GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM Journal of on Scientific and Statistical Computing, 7(3), pp. 856–869, 1986.

[14] Alonso, E. & Gens, A., Rotura de la balsa de residuos mineros de Aznalcóllar. Universidad Politécnica de Cataluña: Barcelona, 2000 (report).

[15] Mediavilla, C., Arenas, J.M., Carrero, G., Galache, J., Silgado, A. & Vázquez, E.M.,  Actuaciones realizadas tras el accidente de Aznalcóllar. Boletín Geológico y Minero. Volumen especial “Las aguas y los suelo tras el accidente de Aznalcóllar”, pp. 35–56, 2001.

[16] Mediavilla, C., Borja, F., López Geta, J.A., Martín Machuca, M., Mantecón, R., del Olmo, P., Palancar, M. & Vives, R., Marco geográfico, geológico e hidrológico regional de la cuenca del Guadiamar. Boletín Geológico y Minero. Volumen especial “Las aguas y los suelo tras el accidente de Aznalcóllar”, pp. 13–34, 2001.

[17] Carrera, J., Bernet, O., Bolzicco, J., Castro, A., Jaén, M., Padilla, F., Salvany, J.M., Vázquez-Suñé, E. & Vázquez, M., Modelación numérica de los acuíferos potencialmente afectados por la rotura de la balsa de Aznalcóllar. Boletín Geológico y Minero. Volumen especial “Las aguas y los suelo tras el accidente de Aznalcóllar”, pp. 199–227, 2001.