Blind-testing Experiments for Interpreting Spatial-prediction Patterns of Landslide Hazard

Blind-testing Experiments for Interpreting Spatial-prediction Patterns of Landslide Hazard

Andrea G. Fabbri Chang-Jo Chung 

DISAT, University of Milano-Bicocca, Milan, Italy

SpatialModels Inc., Ottawa, Canada

Page: 
193-208
|
DOI: 
https://doi.org/10.2495/SAFE-V6-N2-193-208
Received: 
N/A
|
Accepted: 
N/A
|
Published: 
30 June 2016
| Citation

OPEN ACCESS

Abstract: 

In this contribution, we analyse three separate databases in case study areas each suggestive of particular strategies to better portray their predictive power. A database in north-eastern Spain is used to separate sub-areas, with hopefully more compatible geomorphologic settings. Another database in central Portugal offers the opportunity of representing the uncertainty of predicted hazard class membership via iterative cross-validation with systematically partitioned landslide occurrences. A third database in central Slovenia is used to interpret the predictive qualities of two dynamic types of landslides: one that is relatively well predicting and the other one poorly predicting. The diversity of the experiments and their results, point at strategies of blind-testing, still unexploited in spatial prediction modelling, that are not necessarily limited to the landslide hazard domain.

Keywords: 

blind testing, cross-validation, empirical likelihood ratios, landslide hazard, prediction patterns, prediction-rate curves, target pattern

  References

[1] Chung, C.F., Fabbri, A.G. & Van Westen, C.J., Multivariate regression analysis for landslide hazard zonation. Geographical Information Systems in Assessing Natural Hazards, eds. A. Carrara & F. Guzzetti, Kluwer Academic Publishers: Dordrecht, pp. 107–133, 1995. http://dx.doi.org/10.1007/978-94-015-8404-3_7

[2] Chung, C.F. & Fabbri, A.G., Probabilistic prediction models for landslide hazard mapping. Photogrammetric Engineering & Remote Sensing PE&RS, 65(12), pp. 1389– 1399, 1999.

[3] Chung, C.F. & Fabbri, A.G., Validation of spatial prediction models for landslide hazard mapping. Natural Hazards, 30(3), pp. 451–472, 2003. http://dx.doi.org/10.1023/B:NHAZ.0000007172.62651.2b

[4] Chung, C.F. & Fabbri, A.G., Predicting future landslides for risk analysis-spatial models and cross-validation of their results. Geomorphology, 94(3–4), pp. 438–452, 2008. http://dx.doi.org/10.1016/j.geomorph.2006.12.036

[5] Remondo, J., González-Díez, A., Díaz de Terán, J.R. & Cendrero, A., Landslide susceptibility models utilising spatial data análisis techniques. A case study from the lower Deba valley, Guipúzcoa (Spain). Natural Hazards, 30(3), pp. 267–279, 2003a.  http://dx.doi.org/10.1023/B:NHAZ.0000007202.12543.3a

[6] Remondo, J., González-Díez, A., Díaz de Terán, J.R., Cendrero, A., Fabbri, A. & Chung, C.F., Validation of landslide susceptibility maps; examples and applications from a case study in northern Spain. Natural Hazards, 30(3), pp. 437–449, 2003b. http://dx.doi.org/10.1023/B:NHAZ.0000007201.80743.fc

[7] Remondo, J., Bonachea, J. & Cendrero, A., A statistical approach to landslide risk modelling at basin scale: from landslide susceptibility to quantitative risk assessment. Landslides, 2(4), pp. 321–328, 2005. http://dx.doi.org/10.1007/s10346-005-0016-x

[8] Fabbri, A.G. & Chung, C.-J., Training decision-makers in hazard spatial prediction and risk assessment: ideas, tools, strategies and challenges. Disaster Management and Human Health Risk, eds. K. Duncan & C.A. Brebbia, WIT Press: Southampton, UK, pp. 285–296, 2009.

[9] Zêzere, J.L., Landslides in the north of Lisbon region. Fifth European Intensive Course on Applied Geomorphology – Mediterranean and Urban Areas, eds. A.B. Ferreira & G.T. Vieira, Departamento de Geografia, Universidade de Lisboa, pp. 79–89, 1996.

[10] Fabbri, A., Chung, C.F., Napolitano, P., Remondo, J. & Zêzere, J.L., Prediction rate functions of landslide susceptibility applied in the Iberian Peninsula. Risk Analysis III. Series: Management Information Systems, ed. C.A. Brebbia, WIT Press: Southampton, UK, 5, pp. 703–718, 2002.

[11] Zêzere, J.L., Rodrigues, M.L., Reis, E., Garcia, R., Oliveira, R., Oliveira, S., Vieira, G. & Ferreira, A.B., Spatial and temporal data management for the probabilistic landslide hazard assessment considering landslide typology. Landslides: Evaluation and Stabilization 1, eds. W.A. Lacerda, M. Ehrlich, S.A.B. Fontoura & A.S.F. Sayão, Taylor and Francis: London, pp. 117–123, 2004a. http://dx.doi.org/10.1201/b16816-15

[12] Zêzere, J.L., Reis, E., Garcia, R., Oliveira, S., Rodrigues, M.L., Vieira, G. & Ferreira, A.B., Integration of spatial and temporal data for the definition of different landslide hazard scenarios in the area north of Lisbon (Portugal). Natural Hazards and Earth System Sciences, 4(1), pp. 133–146, 2004b. http://dx.doi.org/10.5194/nhess-4-133-2004

[13] Zêzere, J.L., Garcia, R.A.C., Oliveira, S.C. & Reis E., Probabilistic landslide risk analysis considering direct costs in the area north of Lisbon (Portugal). Geomorphology, 94(3–4), pp. 467–495, 2008. http://dx.doi.org/10.1016/j.geomorph.2006.10.040

[14] Komac, M., Statistical landslide prediction map as a basis for a risk map. Risk Analysis IV, ed. C.A. Brebbia, WIT Press: Southampton, UK, pp. 319–330, 2004.

[15] Fabbri, A.G., Komac, M., Patera, A. & Chung, C.-J., Favourability modelling of landslide hazard with spatial uncertainty of class membership: a reapplication in central Slovenia. Proceedings of IAMG 2015, eds. H. Schaeben, R. Tolosana Delgado, K.G. van den Boogaart & R. van den Boogaart, Freiberg, Germany, pp. 848–856, 2015, ISBN 978-3-00-050337-5 (DVD).

[16] Chung, C.F., Using likelihood ratio functions for modelling the conditional probability of occurrence of future landslides for risk assessment. Computers & Geosciences, 32(8), pp. 1052–1065, 2006. http://dx.doi.org/10.1016/j.cageo.2006.02.003

[17] STM software, available at http://www.spatialmodels.com

[18] Fabbri, A.G. & Chung, C.-J., On blind tests and spatial prediction models. Natural Resources Research, 17(2), pp. 107–118, 2008. http://dx.doi.org/10.1007/s11053-008-9072-y