Advanced Procedures for Volcanic and Seismic Monitoring

Advanced Procedures for Volcanic and Seismic Monitoring

Alessio Di Iorio Salvatore Stramondo Christian Bignami Stefano Corradini Luca Merucci 

Alma Sistemi sas (ALMA)

Istituto Nazionale di Geofisica e Vulcanologia (INGV)

Page: 
114-121
|
DOI: 
https://doi.org/10.2495/SAFE-V6-N2-114-121
Received: 
N/A
|
Accepted: 
N/A
|
Published: 
30 June 2016
| Citation

OPEN ACCESS

Abstract: 

European Union FP7 APhoRISM project proposes the development and testing of two new methods to combine Earth Observation satellite data from different sensors and ground data. The aim is to demonstrate that this two types of data, appropriately managed and integrated, can provide new improved Copernicus Emergency products useful for seismic and volcanic crisis management. The first method, APE – A Priori information for Earthquake damage mapping, concerns the generation of maps to address the detection and estimate of damage caused by a seismic event. The novelty of APE relies on the exploitation of a priori information derived by InSAR time series to measure surface movements, shake maps obtained from seismological data, and buildings vulnerability information. The second method, MACE – Multi-platform volcanic Ash Cloud Estimation, concerns the exploitation of GEO sensor platform, LEO satellite sensors and ground measures to improve the ash detection and retrieval, and to characterize the volcanic ash clouds. INGV covers the role of project coordinator and ALMA Sistemi is participating in the exploitation and dissemination of the project results.

Keywords: 

ash concentration, damage mapping, data integration, emergency, satellite data.

  References

[1] Werner, C., Wegmuller, U., Strozzi, T. & Wiesmann, A., Interferometric point target analysis for deformation mapping. IEEE Proceeding Geoscience and Remote Sensing Symposium, 7, pp. 4362–4364, 2003, doi:10.1109/IGARSS.2003.1295516 http://dx.doi.org/10.1109/IGARSS.2003.1295516

[2] Massonnet, D. & Feigl, K.L., Radar interferometry and its application to changes in the earth’s surface. Reviews of Geophysics, 36(4), pp. 441–500, 1998. http://dx.doi.org/10.1029/97RG03139

[3] Cou´e, C., Fraichard, T., Bessi`ere, P. & Mazer, E., Multi-sensor data fusion using Bayesian programming: an automotive application. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 141–146, 2002.

[4] Cortes, C. & Vapnik, V., Support-vector networks. Machine Learning, 20(3), pp. 273– 297, 1995. http://dx.doi.org/10.1007/BF00994018

[5] Grünthal, G. (ed), European Macroseismic Scale 1998 (EMS-98). Cahiers du Centre Européen de Géodynamique et de Séismologie 15, Centre Européen de Géodynamique et de Séismologie. Luxembourg, p. 99, 1998.

[6] Anniballe, R., Chini, M., Pierdicca, N., Bignami, C., Stramondo, S., Noto, F., Scalia. T., Martinelli, A. & Mannella, A., Detecting earthquake damage in urban area: application to Cosmo-SkyMed imagery of L’Aquila earthquake. Proceeding SPIE 9642, SAR Image Analysis, Modelling, and Techniques, 15 96420C, 2015. http://dx.doi.org/10.1117/12.2195723

[7] Romaniello, V., Piscini, A., Bignami, C. & Stramondo, S., Earthquake damage assessment over Port-au-Prince (Haiti) by fusing optical and SAR satellite data. In preparation.

[8] European Aviation Safety Agency (EASA), Safety information bulletin No.: 201017R7, available at http://www.ad.easa.europa.eu/ad/2010-17R7 (accessed on 16 November 2015).

[9] Merucci, L., Zakšek, L., Carboni, E. & Corradini, S., Stereoscopic estimation of volcanic cloud-top height from two geostationary satellites. Remote Sensing, Special Issue on Volcano Remote Sensing, 8(3), p. 206, 2016. http://dx.doi.org/10.3390/rs8030206

[10] Corradini, S., Montopoli, M., Guerrieri, L., Ricci, M., Scollo, S., Merucci, L., Marzano, F.S., Pugnaghi, S., Prestifilippo, M., Ventress, L., Grainger, R.G., Carboni, E., Vulpiani, G. & Coltelli, M., A multi-sensor approach for the volcanic ash cloud retrievals and eruption characterization. Remote Sensing, Special Issue on Volcano Remote Sensing, 8(1), p. 58, 2016. http://dx.doi.org/10.3390/rs8010058