Engineered Containment and Control of Airborne Nanoparticles: Current Status

Engineered Containment and Control of Airborne Nanoparticles: Current Status

Stéphane Hallé Sylvie Nadeau Julien Fatisson 

Génie Mécanique, École de Technologie Supérieure, Canada

Page: 
336-351
|
DOI: 
https://doi.org/10.2495/SAFE-V5-N4-336-351
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

Industry began years ago to manufacture engineered nanoparticles (NPs) and introduce them into products and processes. Meanwhile, the question of the risks associated with nanotechnologies remains unanswered. International organizations that monitor these risks are recommending not only total containment of NPs but also an integrative approach to achieving this by design. Techniques such as electrostatic precipitation, filtration, wet scrubbing and mechanical separation are effective at containing or extracting airborne NPs and thus minimizing worker exposure. Each of these techniques has its advantages and limitations. This literature review shows that the development of effective NP containment and control technologies would benefit from proper engineering of the manufacturing system as a whole.

Keywords: 

containment; control; engineered nanoparticle; risk management.

  References

[1] Project on Emerging nanotechnologies, Consumer product inventory, 2015, available at http://www.nanotechproject.org/cpi/products/ (consulted 23 February 2015).

[2] VeilleNanos, Plus de produits contenant des nanomatériaux sur le marché: quelques chiffres ... et beaucoup de questions, 2013, available at http://veillenanos.fr/wakka.php ?wiki=PenNanoInventoryMajOct2013#Cpi (consulted 2 June 2014.).

[3] TransAtlantic Consumer Dialogue, Nanotechnologies Overview, 2014, available at http://tacd.org/nanotechnologies/ (consulted 2 June 2014).

[4] ANSES, Highlighting the toxicity of certain nanomaterials, ANSES is calling for a stronger regulatory framework, published 15 May 2014, available at http://www.anses. fr/en/content/highlighting-toxicity-certain-nanomaterials-anses-calling-stronger-regulatory-framework (consulted 5 June 2014).

[5] Schulte, P.A., Geraci, C.L., Zumwalde, R., Hoover M. & Kuempel, E., Occupational risk management of engineered nanoparticles. J. Occup. Environ. Hyg., 5, pp. 239–249, 2008. doi: http://dx.doi.org/10.1080/15459620801907840

[6] Schulte, P.A. , Trout, D., Zumwalde, R.D., Kuempel, E., Geraci, C.L., Castranova, V., Mundt, D.J., Mundt, K.A. & Halperin, W.E., Options for occupational health surveillance of workers potentially exposed to engineered nanoparticles: state of science. J. Occup. Environ. Med., 50, pp. 517–526, 2008. doi: http://dx.doi.org/10.1097/JOM.0b013e31816515f7

[7] Brouwer, D., Exposure to manufacture nanoparticles in different workplaces. Toxicology, 269, pp. 120–127, 2010. doi: http://dx.doi.org/10.1016/j.tox.2009.11.017

[8] Maynard, A.D. & Pui, D.Y.H., Nanotechnology and occupational health: new technologies–new challenges. J. Nanopart. Res., 9, pp. 1–3, 2007. doi: http://dx.doi.org/10.1007/ s11051-006-9164-8

[9] Schulte, P.A., Geraci, C.L., Murashov, V., Kuempel, E.D., Zumwalde, R.D., Castranova, V., Hoover, M.D., Hodson, L. & Martinez, K.F., Occupational safety and health criteria for responsible development of nanotechnology. J. Nanopart. Res., 16, pp. 1–17, 2014. doi: http://dx.doi.org/10.1007/s11051-013-2153-9

[10] Gamo, M. & Kishimoto, A., Current practices of risk management for nanomaterials by companies in Japan. Report of findings: Research Project on Facilitation of Public Acceptance of Nanotechnology, 2006, 13 pp.

[11] Rickerby, D.G., Nanotechnological medical devices and nanopharmaceuticals: the European Regulatory Framework and research needs. J. Nanosci. Nanotechnol., 7, pp. 4618–4625, 2007.

[12] Balbus, J.M., Maynard, A.D., Colvin, V.L., Castranova, V., Daston, G.P., Denison, R.A., Dreher, K.L., Goering, P.L., Goldberg, A.M., Kulinowski, K.M., Monteiro-Riviere, N.A., Oberdörster, G., Omenn, G.S., Pinkerton, K.E., Ramos, K.S., Rest, K.M., Sass, J.B., Silbergeld, E.K. & Wong, B.A., Meeting report: hazard assessment for nanoparticles – report from an Interdisciplinary Workshop. Environ. Health Perspect., 115, pp. 1654–1659, 2007. doi: http://dx.doi.org/10.1289/ehp.10327

[13] European Commission (a), 1st Annual Nano Safety for Success Dialogue, Community Health and Consumer Protection, Brussels, 25–26 October 2007, 26 pp.

[14] Government of Canada, Proposed Regulatory Framework for Nanomaterials under the Canadian Environmental Protection Act, 1999, 2007.http://www.ec.gc.ca/substances/ nsb/eng/nanoproposition_e.shtml

[15] Wetzel, M.S., Environmental, health and safety issues and approaches for the processing of polymer nanocomposites, 66th Annual Technical Conference of the Society of Plastics Engineers, Milwaukee, Wisconsin, USA, 4-8 May, 2008, pp. 247–251.

[16] Haut Conseil de la Santé Publique, Avis relatif à la sécurité des travailleurs lors de l’exposition aux nanotubes de carbone, Ministère de la Santé, de la Jeunesse, des Sports et de la vie Associative, France, 2009, 10 pp.

[17] US Environmental Protection Agency, Regulating pesticides that use nanotechnology, 2011, Consulted June 2, 2014. available at http://www.epa.gov/pesticides/ regulating/ nanotechnology.html#application.

[18] Ministère du Développement Durable, Rapport d’étude sur les éléments issus des déclarations des substances à l’état nanoparticulaire, 2013, available at http://www.developpement-durable.gouv.fr/IMG/pdf/Rapport_public_format_final_20131125.pdf

[19] Friedrichs S. & Schulte, J., Environmental, health and safety aspects of nanotechnology – implications for the R&D in (Small) Companies, Sci Technol. Adv. Mater., 8, pp. 12–18, 2007. doi: http://dx.doi.org/10.1016/j.stam.2006.11.020

[20] Warheit, D., Sayes, C.M., Reed, K.L. & Swain, K.A., Health effects related to nanoparticle exposures: environmental, health and safety considerations for assessing hazards and risks. Pharmacol. Ther., 120, pp. 35–42, 2008. doi: http://dx.doi.org/10.1016/j. pharmthera.2008.07.001

[21] Ministère des Affaires Étrangères, Gestion des risques liés aux nanotechnologies. Une coopération Europe-Etats-Unis, 2013, available at http://www.bulletins-electroniques. com/actualites/74320.htm (consulted 2 June 2014).

[22] International Organization for Standardization, ISO/TR 13830:2013. Nanotechnologies – Guidance on Voluntary Labelling for Consumer Products Containing Manufactured Nano-objects, Milwaukee, Wisconsin, USA, 4-8 May, 2013, 6 pp.

[23] Nano and Other Emerging Technologies Blog, EU Amends Food Labeling Regulation Concerning Definition of Engineered Nanomaterials, 2013, available at http://nanotech.lawbc.com/2013/12/articles/international/eu-amends-food-labeling-regulationconcerning-definition-of-engineered-nanomaterials/ (consulted 2 June 2014).

[24] International Organization for Standardization, ISO/TR 12901-1:2012. Nanotechnologies – Occupational Risk Management Applied to Engineered Nanomaterials – Part 1: 

Principles and Approaches, Milwaukee, Wisconsin, USA, 4-8 May, 2012, 37 pp.

[25] International Organization for Standardization, ISO/TS 12901-2:2014. Nanotechnologies – Occupational Risk Management Applied to Engineered Nanomaterials – Part 2: Use of the Control Banding Approach, 2014, 31 pp. 

[26] International Organization for Standardization, ISO/TR 12885:2008. Nanotechnologies – Health and Safety Practices in Occupational Setting Relevant to Nanotechnologies, Milwaukee, Wisconsin, USA, 4-8 May, 2008, 79 pp.

[27] Wiesner, M.R., Lowry, G.V., Alvarez, P., Dionysiou, D. & Biswas, P., Assessing the risks of manufactured nanomaterials. Environ. Sci. Technol., 40, pp. 4336–4345, 2006. doi: http://dx.doi.org/10.1021/es062726m

[28] Guo, L., Liu, X., Sanchez, V., Vaslet, C., Kane, A.B. & Hurt, R.H., A window of opportunity: designing carbon nanomaterials for environmental safety and health. Mater. Sci. 

Forum, 544–545, pp. 511–516, 2007. doi: http://dx.doi.org/10.4028/www.scientific.net/ MSF.544-545.511 

[29] Ostiguy, C., Roberge, B., Ménard, L. & Endo, C.-A., Best Practices Guide to Synthetic Nanoparticles Risk Management, IRSST, R-599, Institut de Recherche Robert Sauvé en Santé et Sécurité au Travail: Montréal, Canada, 2009, 67 pp.

[30] NIOSH (a), General safe practices for working with engineered nanomaterials in research laboratories, Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, DHHS (NIOSH), Publication No. 2012-147, 2012.

[31] NIOSH (b), Filling the knowledge gaps for safe nanotechnology in the workplace. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, DHHS (NIOSH) Publication No. 2013-101, 2012.

[32] Ostiguy, C., Roberge, B., Woods, C. & Soucy, B., Les nanoparticules de synthèse – Connaissances actuelles sur les risques et les mesures de prévention en SST, 2nd édn. Rapport IRSST R-646, 2010, 159 pp.

[33] Shatkin, J.A. & Barry, B.E., Approaching risk assessment of nanoscale materials. NSTINanotech, 1, pp. 553–556, 2006.

[34] Kuhlbusch, T.A.J., Asbach, C., Fissan, H., Gohler D. & Stintz, M., Nanoparticle exposure at nanotechnology workplaces: a review. Part. Fibre Technol., 8, pp. 1–18, 2011. doi: http://dx.doi.org/10.1186/1743-8977-8-22

[35] Hedmer, M., Isaxon, C., Nilsson, P.T., Ludvigsson, L., Messing, M.E., Genberg, J., Skaug, V., Bohgard, M., Tinnerberg, H. & Pagels, J.H., Exposure and emission measurements during production, purification, and functionalization of arc-discharge-produced multi-walled carbon nanotubes. Ann. Occup. Hyg., 58, pp. 355–379, 2014. doi: http://dx.doi.org/10.1093/annhyg/met072

[36] Old, L. & Methner, M.M., Engineering case reports: effectiveness of local exhaust  ventilation (LEV) in controlling engineered nanoparticle emissions during reactor cleanout operations. J. Occup. Environ. Hyg., 5, pp. D63–D69, 2008. doi: http://dx.doi. org/10.1080/15459620802059393

[37] Hallock, M.F., Greenley, P., DiBerardinis, L. & Kallin, D., Potential risks of nanomaterials and how to safely handle materials of uncertain toxicity. J. Chem. Health Safety, January–February, pp. 16–23, 2008.

[38] NIOSH, Current Strategies for Engineering Controls in Nanomaterial Production and Downstream Handling Processes, U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, DHHS (NIOSH), Cincinnati, OH, Publication No. 2014-102, 2013.

[39] Conti, J.A., Killpack, K., Gerritzen, G., Huang, L., Mircheva, M., Magali, D., Harthorn, B.H., Appelbaum, R.P. & Holden, P.A., Health and safety practices in the nanomaterials workplace: results from an international survey. Environ. Sci. Technol., 42, pp. 3155–

3162, 2008. doi: http://dx.doi.org/10.1021/es702158q

[40] Mazzuckelli, L., Methner, M.M., Birch, M.E., Evans, D.E., Ku, B-K., Crouch, K. & Hoover, M.D., Case study: identification and characterization of potential sources of worker exposure to carbon nanofibers during polymer composite laboratory operations. J. Occup. Environ. Hyg., 4, pp. D125–D130, 2007. doi: http://dx.doi. org/10.1080/15459620701683871

[41] Schmid, K. & Riediker, M., Use of nanoparticles in Swiss industry: a targeted survey. Environ. Sci. Technol., 42, pp. 2253–2260, 2008. doi: http://dx.doi.org/10.1021/es071818o

[42] Methner, M.M., Hodson, L., Dames, A. & Geraci, C., Nanoparticle emission assessment technique (NEAT) for the identification and measurement of potential inhalation exposure to engineered nanomaterials – Part B: results from 12 field studies. J. Occup. Environ. Hyg., 7, pp. 163–176, 2010. doi: http://dx.doi.org/10.1080/15459620903508066

[43] Boote, D.N. & Beile, P., Scholars before researchers: on the centrality of the dissertation literature review in research preparation. Educational Researcher, 14, pp. 3–15, 2005.

[44] Randolph, J.J., A guide to writing the dissertation literature review. Practical assessment. Research and Evaluation, 14, 13 pp., 2009.

[45] ACGIH (American Conference of Governmental Industrial Hygienists), Industrial ventilation: a manual of recommended practice for operation and maintenance. American Conference of Governmental Industrial Hygienists, Cincinnati, OH, February 1, 2010.

[46] Mohlmann, C., Welter, J., Klenke, M. & Sander, J., Workplace exposure at nanomaterial processes. J. Phys. Conf. Series, 170, 5 pp., 2009.

[47] Jennings, B.H., Environmental Engineering. Analysis and Practice. International Textbook Company: Scranton, Pennsylvania, USA, 1969, 765 pp.

[48] Peukert, W. & Wadenpohl, C., Industrial separation of fine particles with difficult dust properties. Powder Technol., 118, pp. 136–148, 2001. doi: http://dx.doi.org/10.1016/ S0032-5910(01)00304-7

[49] Asfahl, C.R., Industrial Safety and Health Management, Pearson Prentice Hall: USA, 512 pp., 2014.

[50] Schaffer, R.E. & Rensagamy, S., Respiratory protection against airborne nanoparticles: 

a review. J. Nanopart. Res., 11, pp. 1661–1672, 2009. doi: http://dx.doi.org/10.1007/ s11051-009-9649-3

[51] Wang, C-S. & Otani, Y., Removal of nanoparticles from gas streams by fibrous filters: a review. Ind. Eng. Chem. Res., 52, pp. 5–17, 2013.

[52] Lin, G-Y., Cuc, L-T., Lu, W., Tsai, C-J., Chein, H-M. & Chang, F-T., High-efficiency wet electrocyclones for removing fine and nanosized particles. Sep. Purif. Technol., 114, pp. 99–107, 2013. doi: http://dx.doi.org/10.1016/j.seppur.2013.04.039

[53] Varghese, I., Murthy Peri, M.D., Dunbar, T., Maynard, B., Thomas, D.A. & Cetinkaya, C., Removal of nanoparticles with laser-induced plasma. J. Adhesion Sci. Technol., 22, pp. 651–674, 2008. doi: http://dx.doi.org/10.1163/156856108X305561

[54] Murthy Peri, M.D., Devarapalli, V. & Cetinkaya, C., Selective removal of 10–40 nm particles from silicon wafers using laser-induced plasma shockwaves. J. Adhesion Sci. Technol., 21, pp. 331–337, 2007. doi: http://dx.doi.org/10.1163/156856107780684594

[55] Nazaroff, W.W. & Alvarez-Cohen, L., Environmental Engineering Science, 1st edn., Wiley, Hoboken, New Jersey, USA, 2000, 704 pp.

[56] Morency F. & Hallé, S., A simplified approach for modelling airborne nanoparticles transport and diffusion, J Comput. Methods Experiment Measurements, 1, pp. 55–71, 2013. doi: http://dx.doi.org/10.2495/CMEM-V1-N1-55-71

[57] Jaworek, A., Balachandran, W., Krupa, A., Kulon, J. & Lacrowski, M., Wet electroscrubbers for state of the art gas cleaning. Environ. Sci. Technol., 40, pp. 6197–6207, 2006. doi: http://dx.doi.org/10.1021/es0605927

[58] Jaworek, A., Krupa, A., Sobczyk, A.T., Marchewicz, A., Szudyga, M., Antes, T., Balachandran, W., Di Natale, F. & Carotenuto, C., Submicron particles removal by charged sprays. Fundamentals. J. Electrostatics, 71, pp. 345–350, 2013. doi: http:// dx.doi.org/10.1016/j.elstat.2012.11.028

[59] D’Addio, L., Carotenuto, C., Balachandran, W., Lancia, A. & Di Natale, F., Experimental analysis on the capture of submicron particles (PM0.5) by wet electrostatic scrubbing. Chem. Eng. Sci., 106, pp. 222–230, 2014. doi: http://dx.doi.org/10.1016/j. ces.2013.11.044

[60] Mostofi, R., Wang, B., Haghighat, F., Bahloul, A. & Jaime, L., Performance of mechanical filters and respirators for capturing nanoparticles – limitations and future directions. Industrial Health, 48, pp. 296–304, 2010. doi: http://dx.doi.org/10.2486/indhealth.48.296

[61] Mostofi, R., Noel, A., Haghighat, F., Bahloul, A., Jaime, L. & Cloutier, Y., Impact of two particle measurement techniques on the determination of N95 class respirator filtration performance against ultrafine particles. J. Hazard Mater., 217–218, pp. 51–57, 

2012. doi: http://dx.doi.org/10.1016/j.jhazmat.2012.02.058

[62] Lin, G.-H. & Tsai, C.-J., Numerical modeling of nanoparticle collection efficiency of single-stage wire-in-plate electrostatic precipitators. Aerosol Sci. Technol., 44, pp. 1122–1130, 2010. doi: http://dx.doi.org/10.1080/02786826.2010.512320

[63] Lin, G.-Y., Chen, T.-M. & Tsai, C.-J., A modified Deutsch–Anderson equation for predicting the nanoparticle collection efficiency of electrostatic precipitators. Aerosol Air 

Qual. Res., 12, pp. 697–706, 2012. doi: http://dx.doi.org/10.4209/aaqr.2012.04.0085

[64] Long, Z. & Yao, Q., Evaluation of various particle-charging models for simulating particle dynamics in electrostatic precipitators. J. Aerosol Sci., 41, pp. 702–718, 2010. doi: http://dx.doi.org/10.1016/j.jaerosci.2010.04.005

[65] Kim, H.-J., Han, B., Kim, Y.-J. & Yoa, S.-J., Characteristics of an electrostatic precipitator for submicron particles using a non-metallic electrodes and collection plates. J. Aerosol Sci. 41, pp. 987–997, 2010. doi: http://dx.doi.org/10.1016/j.jaerosci.2010.08.001

[66] Poppendieck, D.G., Rim, D. & Persily, A.K., Ultrafine particle removal and ozone generation by in-duct electrostatic precipitators. Environ. Sci. Technol., 48, pp. 2067–2074, 2014. doi: http://dx.doi.org/10.1021/es404884p

[67] Hansen, S.F., Regulation and risk assessment of nanomaterials. Too little, too late? PhD Thesis, Department of Environmental Engineering, Technical University of Denmark, 2009, 130 pp.

[68] Givehchi, R. & Tan, Z., An overview of airborne nanoparticle filtration and thermal rebound theory. Aerosol Air Qual., 14, pp. 45–63, 2014. doi: http://dx.doi.org/10.4209/ aaqr.2013.07.0239

[69] Wang, J., Thompson, D. & Hui, D.Y.H., Integrative filtration research and sustainable nanotechnology. Particuology, 11, pp. 5–13, 2013. doi: http://dx.doi.org/10.1016/j.partic.2012.06.004

[70] Golanski, L., Guiot, A. & Tardif, F., Experimental evaluation of individual protection devices against different types of nanoaerosols: graphite, TiO2 and Pt. J. Nanopart. Res., 12, pp. 83–89, 2010. doi: http://dx.doi.org/10.1007/s11051-009-9804-x

[71] Rensagamy, S., BerryAnn, R. & Szalajda, J., Nanoparticle filtration performance of filtering facepieces respirators and canister/cartridges filters. J. Occup. Environ. Hyg., 

10, pp. 519–525, 2013. doi: http://dx.doi.org/10.1080/15459624.2013.818229

[72] Wang, J. & Tronville, P., Toward standardized test methods to determine the effectiveness of filtration media against airborne nanoparticles. J. Nanopart. Res., 16, pp. 1–33, 2014. doi: http://dx.doi.org/10.1007/s11051-014-2417-z

[73] Losert, S., vo Goetz, N., Bekker, C., Fransman, W., Wijnhoven, S.W.P., Delmaar, C.,  Hungerbuhler, K. & Ulrich, A., Human exposure to conventional and nanoparticle-containing sprays – a critical review. Environ. Sci. Technol., 48, pp. 5366–5378, 2014. doi: http://dx.doi.org/10.1021/es5001819

[74] Debia, M., Beaudry, C., Weitchenthal, S., Tardiff, R. & Dufresne, A., Caractérisation et contrôle de l’exposition professionnelle aux NP et particules ultra-fines, Report R-746 IRSST (Institut de Recherche en Santé et Sécurité du Travail Robert Sauvé), 2012, 66 pp.

[75] Fatisson, J., Hallé, S., Nadeau, S., Viau, C., Camus, M. & Cloutier, Y., A pilot study towards ranking occupational health risk factors emanating from engineered nanoparticles: review of a decade of literature, Int. J. Safety Security Eng., 3, pp. 241–264, 2013. doi: http://dx.doi.org/10.2495/SAFE-V3-N4-241-263

[76] Kleindorfer, P.R. & Kunreuther, H., Decision Sciences. An Integrative Perspective, Cambridge University Press: Cambridge, 1993, 470 pp. doi: http://dx.doi.org/10.1017/ CBO9781139173537

[77] Demou, E., Stark, W.J. & Hellweg, S., Particle emission and exposure during nanoparticle synthesis in research laboratories. Ann. Occup. Hyg., 53, pp. 829–838, 2009. doi: http://dx.doi.org/10.1093/annhyg/mep061

[78] Tsai, S-J., Huang, R.F. & Ellenbecker, M.J., Airborne nanoparticle exposure while using constant-flow, constant-velocity and air-curtain-isolated fume hoods. Ann. Occup. Hyg., 54, pp. 78–87, 2010. doi: http://dx.doi.org/10.1093/annhyg/mep074

[79] Lo, L.-M., Dunn, K.H., Hammond, D., Almaguer, D., Bartolomew, I., Topmiller, J., Tsai, C.-J., Ellenbecker, M. & Huang, C.-C., Evaluation of engineering controls for manufacturing nanofiber sheets and yarns. Department of Health and Human Services Centers for Disease Control and Prevention National Institute for Occupational Safety and Health, Division of Applied Research and Technology Engineering and Physical Hazards Branch EPHB Report No. 356-11a, 2012.

[80] European Commission (b), The Appropriateness of the Risk Assessment Methodology in Accordance with the Technical Guidance Documents for New and Existing Substances for Assessing the Risks of Nanomaterials, Scientific Committee on Emerging and Newly Identified Health Risks, Brussels, Belgium, 2007, 43 pp.

[81] Asback, C., Kaminski, H., Von Barany, D., Kuhlbusch, T.A.J., Monz, C., Dziurowitz, N., Pelzer, J., Vossen, K., Berlin, K., Dietrich, S., Götz, U., Kiesling, H.-J., Schierl, R. & Dahmann, D., Comparability of portable nanoparticle exposure monitors. Ann. Occup. Hyg., 56, pp. 606–621, 2012.

[82] Bau, S., Zimmermann, B., Rayet, R. & Witschger, O., A laboratory study of the performance of the handheld diffusion size classifier (DiSCmini) for various aerosols in the 15–400 nm range. Environ. Sci. Processes Impacts, 17, pp. 261–269, 2015. doi: http:// dx.doi.org/10.1039/C4EM00491D