Damage and Loss Prognosis Tools Correlating Flood Action and Building’s Resistance-Type Parameters

Damage and Loss Prognosis Tools Correlating Flood Action and Building’s Resistance-Type Parameters

H. Maiwald J. Schwarz 

Earthquake Damage Analysis Center (EDAC), Bauhaus Universität Weimar, Germany

| |
| | Citation



The planning and implementation of numerous flood protection measures and the associated cost–benefit studies after the 2002 flood in Germany showed the demand for accurate damage functions. Conventional loss models are limited to the relationship between flood height and the recovery costs for a specific usage class (e.g. private residential buildings). Important parameters on the resistance side such as the building materials and further impact parameters such as flow velocity remain unconsidered. Following the procedure developed in the risk analysis of earthquakes, it is checked whether methodical fundamentals can be transferred or are to be adopted in case of flood impact and which parameters must be derived from data surveys.

On the basis of a large and uniformly elaborated flood damage database (including different data sets collected by the Earthquake Damage Analysis Center (EDAC) after the 2002 flood in Saxony, Germany), an engineered and vulnerability-oriented prognosis tool was developed to determine the structural damage and the losses for any given flood scenario.

Repeatedly observed damage patterns are transformed into a classification scheme of damage grades. With this tool, the structural damage of many different damage cases can be analysed in a systematic way and related to the parameters describing the flood impact. Vulnerability classes for the different building types are defined by using the data for determining characteristic ranges of damage  expectation. Basic steps of the procedure are illustrated for a fictitious data set and subsequently applied to the existing database.

Specific vulnerability and damage functions enable the calculation of damage grades and the loss assessment in separate steps of the same procedure, related to the inundation level or additionally the flow velocity (action side), and the predominant building types or the vulnerability classes (resistance side).

The damage distribution caused by the August 2002 flood can be re-interpreted for study areas with close agreement to the observed effects. A similar good prognosis could be achieved for the reported loss in monetary terms by correlating vulnerability and impact parameters using the recently elaborated specific damage functions. First investigations with respect to the location of buildings, the direction of flow and the structural damage are also represented. This paper gives an overview of the background and the basic steps of the developed procedure and illustrates the different fields of its application.


 damage functions, damage grades, flood damage, flow velocity, loss estimation, specific energy height, vulnerability classes, vulnerability functions


[1] Leitstelle Wiederaufbau, Augusthochwasser 2002, Schadensausgleich und Wiederaufbau im Freistaat Sachsen, Sächsische Staatskanzlei: Dresden, 2003

[2] MEDIS, Hochwasserschäden – Erfassung, Abschätzung und Vermeidung, Final Report of the RIMAX Research Project MEDIS: Methoden zur Erfassung direkter und indirekter Hochwasserschäden, eds., A.H. Thieken, I. Seifert, B. Merz, Oekom-Verlag, München, 2010.

[3] Deilmann, C., Naumann, T., Pflügner, W., Schanze, J., Calculation of flood damages in VERIS-Elbe – based on urban structural types and synthetic damage functions, Flood Risk Management Research. From Extreme Events to Citizens Involvement, eds., J. Schanze, Proceedings European Symposium on Flood Risk Management Research (EFRM 2007), 6–7th February 2007, Dresden, Germany. Dresden: IÖR, pp. 206–207, 2007.

[4] Penning-Rowsell, E.C., Johnson, C., Tunstall, S., Tapsell, S., Morris, J., Chatterton, J., Coker, A., & Green, C., The Benefits of Flood and Coastal Defense: Techniques and Data for 2003, Middlesex University Press: London, 2003.

[5] Naumann, T. & Rubin C., Abschätzung von Hochwasserschäden an der Bausubstanz von Wohngebäuden nach einem gebäudetypologischen VERIS-Elbe Ansatz, DWASeminar Erhebung, Aufbereitung und Verwendung von Hochwasserschadensinformationen: Neues und Bewährtes, DWA Deutsche Vereinigung für Wasserwirtschaft: Abwasser und Abfall, 2008.

[6] Grünthal, G. (ed.), Musson, R., Schwarz, J. & Stucchi, M., European Macroseismic Scale 1998. Cahiers du Centre Européen de Geodynamique et de Seismologie, Volume 15, Luxembourg, 1998.

[7] Smith, K. & Ward, R., Floods Physical Processes and Human Impacts, John Wiley & Sons Ltd.: Baffins Lane, Chichester, 1998.

[8] Penning-Rowsell, C., Johnson, C., Tunstall, S., Tapsell, S., Morris, J., Chatterton, J. & Green, C., The Benefits of Flood and Coastal Risk Management: A Handbook of Assessment Techniques, Middlesex University Press: London, 2005.

[9] Maiwald, H. & Schwarz, J., Ermittlung von Hochwasserschäden unter Berücksichtigung der Bauwerksverletzbarkeit, EDAC-Hochwasserschadensmodell, Scientific Technical Reports 01-11, Zentrum für die Ingenieuranalyse von Erdbebenschäden, Universitätsverlag, Bauhaus-Universität Weimar, 2011.

[10] Schwarz, J. & Maiwald, H., Berücksichtigung struktureller Schäden unter Hochwassereinwirkung. Bautechnik, 84(7), pp. 450–464, 2007. doi: http://dx.doi.org/10.1002/ bate.200710039

[11] Maiwald, H., Ingenieurmäßige Ermittlung von Hochwasserschadenspotentialen im mikroskaligen Bereich, Dissertation, Bauhaus-Universität Weimar, Schriftenreihe des Instituts für Konstruktiven Ingenieurbau, Heft, 2007.

[12] Schwarz, J. & Maiwald, H., Ingenieurmäßigen Beschreibung der Schadenserwartung von Gebäuden unter Hochwassereinwirkung auf der Grundlage von Verletzbarkeitsklassen, Final Report to Project 246 143 75 by order of the Landestalsperrenverwaltung des Freistaates Sachsen. Earthquake Damage Analysis Center, Bauhaus-Universität, Weimar, 2009.

[13] Maiwald, H. & Schwarz, J., Berücksichtigung der Fließgeschwindigkeit bei Hochwasser- Schadensmodellen, Bautechnik, 86(9), pp. 550–565, 2009. doi: http://dx.doi. org/10.1002/bate.200910056

[14] Schwarz, J., Maiwald, H. & Gerstberger, A., Quantifizierung der Schäden infolge Hochwassereinwirkung: Fallstudie Eilenburg, Bautechnik, 82(12), pp. 845–856, 2005. doi: http://dx.doi.org/10.1002/bate.200590247

[15] Sächsisches Staatsministerium des Innern: Expertises of the chambers of architects and engineers by order of Saxon State Ministry of the Interior, 2002.

[16] US Army Corps of Engineers (USACE), Risk-based analysis for flood damage r eduction studies, Engineering Manual 1110-201619, 1996.

[17] Schwarz, J. & Maiwald, H., Damage and loss prediction model based on the v ulnerability of building types, Proceedings of the 4th International Symposium on Flood Defence, 6–8 May 2008, Toronto, Canada, 2008.

[18] Maiwald, H. & Schwarz, J., Damage and loss prediction model considering i nundation level, flow velocity and vulnerability of building types, 3rd International Conference on Flood Recovery, Innovation and Response, FRIAR 2012, Dubrovnik, Croatia, 2012. doi: http://dx.doi.org/10.2495/friar120051

[19] Schwarz, J. & Maiwald, H., Empirical vulnerability assessment and damage description for natural hazards following the principles of modern macroseismic scales, 15th World Conference Earthquake Engineering, Lisboa, 2012, Paper 5652.

[20] Bundesministerium für Verkehr, Bau- und Wohnungswesen, Planen und Bauen von Gebäuden in hochwassergefährdeten Gebieten, Hochwasserschutzfibel, 2002.

[21] Schwarz, J. & Maiwald, H., Von der Schadensaufnahme zur Verletzbarkeitsfunktion – ein Ansatz aus den Ingenieurwissenschaften, Section 9.2 in Hochwasserschäden – Erfassung, Abschätzung und Vermeidung, Final report of the RIMAX research project MEDIS: Methoden zur Erfassung direkter und indirekter Hochwasserschäden, eds., A.H. Thieken, I. Seifert & B. Merz, Oekom-Verlag, München, 2010.

[22] Reese, S., Die Vulnerabilität des schleswig-holsteinischen Küstenraumes durch Sturmfluten, Fallstudien von der Nord- und Ostseeküste, Dissertation, MathematischNaturwissenschaftlichen Fakultät, Christian-Albrechts-Universität zu Kiel, www.sterr. geographie.uni-kiel.de/mare/Dissertation-SReese.pdf, 2003.

[23] National Tsunami Hazard Mitigation Program, Designing for Tsunamis: Background Papers, Chapter 5: Building design.

[24] Kelman, I., Physical flood vulnerability of residential properties in coastal, eastern  England, Dissertation, University of Cambridge, UK, 2002.

[25] Roos, W., Damage to Buildings, DELFT Cluster: The Netherlands, http://www.library. tudelft.nl/delftcluster/PDF-files/DC1-233-9.pdf, 2003.

[26] Black, R.D., Floodproofing Rural Residences, Report no. EDA 77-088, US Department of Commerce, Economic Development Administration: Washington, DC, 1975.

[27] Sangrey, D.A., Murphy, P.J. & Nieber, J.L., Evaluating the Impact of Structurally  Interrupted Flood Plain Flows, Cornell University, Prepared for: Office of Water Research and Technology. Distributed by: NTIS. PB-247 552, 1975.

[28] Smith, D. I., Extreme floods and dam failure inundation implications for loss a ssessment. Proceedings of a Seminar Natural and Technological Hazards: Implications for the Insurance Industry, 1991, pp. 149–165, 1997.

[29] Scawthorn, C., Flores, P., Blais, N., Seligson, H., Tate, E., Chang, S., Mifflin, E., Thomas, W., Murphy, J., Jones, C. & Lawrence, M., HAZUS-MH flood loss estimation methodology. II. Damage and loss assessment. Natural Hazards Review, 7, pp. 72–81, 

2006. doi: http://dx.doi.org/10.1061/(asce)1527-6988(2006)7:2(72)

[30] Department of Homeland Security, Federal Emergency Management Agency, Mitigation Division, Multi-hazard Loss Estimation Methodology, Flood Model HAZUS®MH MR4, Technical Manual, 2009.

[31] Bundesamt für Wasserwirtschaft, Bundesamt für Raumplanung, Bundesamt für Umwelt, Wald und Landschaft, Naturgefahren Berücksichtigung der Hochwassergefahren bei raumwirksamen Tätigkeiten, Empfehlungen, http://www.bafu.admin.ch/ publikationen/ publikation/00786/index.html?lang=de, 1997.

[32] Landestalsperrenverwaltung des Freistaates Sachsen, Erstellung von Hochwasserschutzkonzeptionen für Fließgewässer (Empfehlungen für Ermittlung des Gefährdungs- und Schadenspotenzials bei Hochwasserereignissen sowie für die Feststellung von Schutzzielen), 2003.

[33] Kreibich, H., Piroth, K., Seifert, I., Maiwald, H., Kunert, U., Schwarz, J., Merz, B. & Thieken, A., Is flow velocity a significant parameter in flood damage modelling? 

Natural Hazards and Earth System Sciences, 5, pp. 1679–1692, 2009. doi: http://dx.doi. org/10.5194/nhess-9-1679-2009

[34] Bundesministerium für Raumordnung, Bauwesen und Städtebau, Normalherstellungskosten NHK 95, http://www.gutachterausschuss.de/NHK/NHK95.pdf, 1997.

[35] Bundesministerium für Verkehr, Bau- und Wohnungswesen, Normalherstellungskosten NHK 2000, www.wertvmg.de/IHK/WertR-2006_Anlage-7-NHK-2000.pdf, 2000.

[36] Arbeitsgemeinschaft der Vermessungsverwaltungen der Länder der Bundesrepublik Deutschland, AdV: ATKIS – Amtliches Topographisch-Kartographisches Informationssystem, http://www.atkis.de.

[37] Sächsische Aufbaubank (Saxony Relief Bank), Information to the losses on the residential and commercial building sector due to 2002 flood in Saxony, Excel table, submitted in 12/2012.