Trends in Rainfall and Streamflow Series: Portuguese Case Studies

Trends in Rainfall and Streamflow Series: Portuguese Case Studies

M.M. Portela J.F. Santos A.T. Silva 

1nstituto Superior Técnico, IST, Portugal

Escola Superior de Tecnologia e Gestão de Beja, ESTIG, Portugal

Page: 
221-248
|
DOI: 
https://doi.org/10.2495/SAFE-V4-N3-221-248
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

During the history of the Earth, numerous large-scale climate changes occurred, some of them with a cyclic nature. The majority of such changes happened in periods of hundreds, thousands or even millions of years as a result of natural causes, like small variations in Earth’s orbit that change the amount of solar energy received by the planet. However, in recent decades, it has been progressively accepted by the scientifi c community that the emission of greenhouse gases into the atmosphere is the major driving force of the climate change that presumably is occurring since the last century and mainly since the last 50–75 years. However, if there was a change in such a recent and short period, then the time series of the hydrologic variables more directly related to the climate, as the rainfall or the temperature, should denote signs of it, in the form of trends or non-homogeneities. In the previous scope, several studies have been conducted for mainland Portugal aiming at identifying trends in long hydrological time series and at trying to understand those trends from a climate change perspective. Some of the models applied for that purpose, as well as some of the results thus achieved, are briefl y summarized. In general terms, the studies showed that the analyzed time series do not show the trends that are generally pointed out as denoting signs of the climate change, possibly due to their pronounced natural variability and to the insuffi cient length of the recording periods. There was only one exception, the rainfall in March which, in relative terms, denotes a signifi cant decrease over mainland Portugal, such a decrease being however very small when considered in absolute terms.

Keywords: 

 climate change, Gumbel law, hydrologic time series, kernel technique, trend detection, Mann–Kendall test, moving average, statistical models

  References

[1] Karpouzos, D.K., Kavalieratou, S. & Babajimopoulos, C., Trend analysis of precipita-tion data in Piera region (Greece). EWRA European Water, 30, pp. 31–40, 2010.

[2] de Lima, M.I., Marques, A.C & de Lima, J.L., Análise de tendência da precipitação anual e mensal no período 1900-2000, em Portugal Continental. Territorium, pp. 11–18, 2005.

[3] de Lima, M.I., Marques, A.C., de Lima, J.L. & Coelho, M.F., Precipitation trends in Mainland Portugal in the period 1941–2000, Fourth InterCeltic Colloquium on Hydrology and Management of Water Resources, Guimarães, Portugal, 2005.

[4] IPCC, Intergovernmental Panel on Climate Change, Climate Change 2013: The Physi-cal Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, eds. T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley, Cambridge University Press: Cambridge, United Kingdom and New York, NY, USA, 1535 pp, 2013.

[5] Bates, B., Kundzewicz, Z., Wu, S. & Palutikof, J., Climate change and water, Tech. report, Intergovernmental Panel on Climate Change, 2008.

[6] IPCC, Intergovernmental Panel on Climate Change. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (copy pending), 2014.

[7] Milly, P., Betancourt, J., Falkenmark, M., Hirsch, R., Kundzewicz, Z., Lettenmaier, D. & Stouffer, R. Stationarity is dead: whither water management? Science, 319, pp. 573–574, 2008. doi: http://dx.doi.org/10.1126/science.1151915

[8] Clarke, R., Hydrological prediction in a non-stationary world. Hydrology and Earth System Sciences, 11, pp. 408–414, 2007, doi: 10.5194/hess-11-408-2007. doi: http:// dx.doi.org/10.5194/hess-11-408-2007

[9] Santos, F.D., Forbes, K. & Moita, R. (eds). Climate Change in Portugal. Scenarios, Impacts and Adaptation Measures – SIAM Project. Gradiva: Lisbon, 2001.

[10] Santos, F.D. & Miranda, P.M. (eds.). Alterações climáticas em Portugal. Cenários, impactos e medidas de adaptação, Projecto SIAMII, Gradiva, Lisbon (in Portuguese), 2006.

[11] Portela, M.M. & Quintela, A.C., Indícios de mudança climática em séries de precipitação em Portugal Continental. Recursos Hídricos, 19(2 and 3), pp. 41–74, Associação Portuguesa dos Recursos Hídricos (APRH), ISSN 0870-1741, Lisbon (in Portuguese), 1998.

[12] Portela, M.M & Quintela, A.C., A diminuição da precipitação em épocas do ano como indício de mudança climática. Casos estudados em Portugal Continental. Ingeniéria del Agua, 8(1), pp. 79–92, 2001, ISSN 1134-2196, Spain (in Portuguese).

[13] Santos, J.F. & Portela, M.M., Tendências em séries de precipitação mensal em Portugal Continental. Aplicação do teste de Mann-Kendall, 8º Simpósio de Hidráulica e Recursos Hídricos dos Países de Língua Ofi cial Portuguesa (8º SILUSBA), Associação Portuguesa dos Recursos Hídricos (APRH), Associação Brasileira dos Recursos Hídricos (ABRH), Associação Moçambicana de Ciência e Tecnologia (AMCT), Instituto Nacional de Gestão de Recursos Hídricos de Cabo Verde (INGRH), S. Paulo, Brasil (in Portuguese), 2007.

[14] Santos, J.F. & Portela, M.M., Quantifi cação de tendências em séries de precipitação mensal e anual em Portugal Continental, VIII Seminário Ibero Americano sobre Sistemas de Abastecimento Urbano, SEREA 2008, IST, Lisbon, Portugal (in Portuguese), 2008.

[15] de Lima, M.I,  Carvalho, S.C. & de Lima, J.L., Investigating annual and monthly trends in precipitation structure: an overview across Portugal. Natural Hazards and Earth System Sciences, 10, pp. 2429–2440, 2010. doi: http://dx.doi.org/10.5194/nhess-10-2429-2010

[16] de Lima, M.I., Carvalho, S.C., de Lima, J.L. & Coelho, M.F., Trends in precipitation: analysis of long annual and monthly time series from mainland Portugal. Advances in Geosciences, 25, pp. 155–160, 2010. doi: http://dx.doi.org/10.5194/adgeo-25-155-2010

[17] de Lima, M.I., Santo, F.E., Ramos, A.M. & de Lima, J.L., Recent variations in climate variables in mainland Portugal: daily precipitation and air temperature extremes, Global Conference on Global Warming 2011, Lisbon, 2011.

[18] Boken, V.K., Cracknell, A.P. & Heathcote, R.L., Monitoring and Predicting Agricultural Drought: A Global Study, Oxford University Press, Inc.: New York, 2005. 

[19] Portela, M.M., Santos, J.F., Quintela, A.C. & Vaz, C., Trends in hydrologic time series, Fifth International Conference on River Basin Management, RBM09 (Malta), pp. 415–427, Wessex Institute, WIT Press, Southampton, WOS: 000273610400017, doi:10.2495/RM090171, 2009, ISBN 978-1-84564-199-3. doi: http://dx.doi.org/10.2495/RM090171

[20] Portela, M.M., Santos, J.F., Quintela, A.C., Vaz, C. & Martins, C., About the trend detection in Portuguese long hydrologic time series and the climate change, Regional Rainfall 2010, Regional Expert Meeting on Rainfall-Runoff analysis and Climate Change at the Balkans, Faculty of Civil Engineering, University of Belgrade, Serbia and Montenegro, 2010.

[21] Portela, M.M., Santos, J. & Coelho, M.F., Alterações em séries de variáveis hidrológicas: seus efeitos nos volumes de água a fornecer para rega e na fi abilidade do  fornecimento desses volumes a partir de albufeiras, 8º Congresso da Água, Associação Portuguesa dos Recursos Hídricos (APRH), Figueira da Foz, Portugal (in Portuguese), 2006.

[22] Santos, J.F., Alterações em séries de variáveis hidro-climatológicas: seus efeitos nos volumes de água a fornecer para rega e na fi abilidade do fornecimento desses volumes a partir de albufeiras, MSc Thesis, IST, Lisbon, Portugal (in Portuguese), 2008.

[23] Vaz, C.M., Análise de tendências em séries de precipitação diária máxima anual, MSc Thesis, IST, Lisbon, Portugal (in Portuguese), 2008.

[24] Martins, C.M.C.. Alterações no padrão intra-anual da precipitação como indício de mudança climática, MSc Thesis, IST, Lisbon, Portugal (in Portuguese), 2010.

[25] Silva, A.T., Portela, M.M. & Naghettini, M., Nonstationarities in the occurrence rates of fl ood events in Portuguese watersheds. Hydrology and Earth System Sciences, 16, pp. 241–254, 2012 doi: 10.5194/hess-16-241-2012 (WOS:000300232900019). doi: http://dx.doi.org/10.5194/hess-16-241-2012

[26] Kenney, J.F. & Keeping, E.S., Moving averages. Section 14.2 in Mathematics of Statistics, Pt. 1, 3rd ed. Van Nostrand: Princeton, NJ; pp. 221–223, 1962.

[27] Yevjevich, V., Probability and statistics in Hydrology, Water Resources Publications: Fort Collins, CO, USA, 1972.

[28] Siegel, S.. Estatística não-paramétrica para as Ciências do Comportamento. McGrawHill: Brazil, 1975 (in Portuguese).

[29] Murteira, B.J.F., Probabilidade e estatística, Volume II. McGraw-Hill: Portugal (in Portuguese), 1980.

[30] Henriques, A.G., Modelos de distribuição de frequências de caudais de cheia, PhD Thesis, IST, Lisbon, Portugal, 1990  (in Portuguese).

[31] Mann, H.B., Non-parametric test against trend. Econometrica, 13, pp. 245–259, 1945. doi: http://dx.doi.org/10.2307/1907187

[32] Kendall, M.G., Rank Correlation Methods, 4th edn., Charles Griffi n: London, 1975.

[33] Sen, P.K., Estimates of the regression coeffi cient based on Kendall’s Tau. Journal of the American Statistical Association, 63, pp. 1379–1389, 1968. doi: http://dx.doi.org/10.10 80/01621459.1968.10480934

[34] Hirsch, R.M., Slack, J.R. & Smith, R.A., Techniques of trend analysis for monthly water-quality data. Water Resources Research, 18, pp. 107–121, 1982. doi: http://dx.doi. org/10.1029/WR018i001p00107

[35] Lettenmaier, D.P., Wood, E.F. & Wallis, J.R., Hydro-climatological trends in the continental United States, 1948–88. Journal of Climate, 7, pp. 586–607, 1993. doi: http://dx.doi.org/10.1175/1520-0442(1994)007<0586:HCTITC>2.0.CO;2

[36] Raynali, J.A. & Salas, J.D., Estimation procedures for the type-1 extreme value distribution. Journal of Hydrology, 87, pp. 315–336, 1986. doi: http://dx.doi.org/10.1016/00221694(86)90022-3

[37] Reiss, R.D. & Thomas, M., Statistical Analysis of Extreme Values. Birkhauser Verlag, Basel, Switzerland, 2001.

[38] Cunnane, C., Unbiased plotting positions – a review. Journal of Hydrology, 37, pp. 205–222, 1978. doi: http://dx.doi.org/10.1016/0022-1694(78)90017-3

[39] Thornthwaite, C.W., An approach toward a rational classifi cation of climate. Geographical Review, 38, pp. 55–94, 1948. doi: http://dx.doi.org/10.2307/210739

[40] Brooks, K.N., Hydrology and the Management of Watersheds. Blackwell Publishing, 574 pp, Iowa, 2003, ISBN 0813829852.

[41] Lencastre, A. & Franco, F.M., Lições de hidrologia, Universidade Nova de Lisbon, Lisbon, 1984 (in Portuguese).

[42] Varenne e Mendonça, P., Excerto das Lições de Hidráulica Geral e Agrícola, Instituto Superior de Agronomia 4ª edição ciclostilada, Lisbon, 1972–1973  (in Portuguese).

[43] Temez, J.R., Modelo matemático de transformación precipitación-aportación, ASINEL, Asociación de Investigación Industrial Eléctrica, Spain, 1977 (in Spanish).

[44] Monreal, T.E., Curso internacional de hidrologia general y aplicada. Área de hidrologia superfi cial. Tomo I, II, III, IV, V e VI CEDEX, Madrid, 1993  (in Spanish).

[45] Quintela, A.C., Recursos de águas superfi ciais em Portugal Continental, PhD Thesis, Instituto Superior Técnico, Lisbon, 1967  (in Portuguese).

[46] Pereira, L.S., Necessidades de água e métodos de rega, Colecção Euroagro, Publicações Europa América, Mem Martins, 2004  (in Portuguese).

[47] Pereira, L.S, Allen, R.G., Raes, D. & Smith, M., FAO irrigation and drainage paper no. 56, Crop Evapotranspiration. Food and Agriculture Organization of the United Nations, FAO: Rome, 2000.

[48] McMahon, T. & Adeloye, A., Water Resources Yield. Water Resources Publication: Colorado, 2005.

[49] Nagy, I., Asante-Duah, D. & Zsuffa, I., Hydrological Dimensioning and Operation of Reservoirs: Practical Design Concepts and Principles. Kluwer Academic Publishers: Dordrecht, 2002. doi: http://dx.doi.org/10.1007/978-94-015-9894-1

[50] Lang, M., Ouarda, T. & Bobée, B., Towards operational guidelines for over-threshold modeling. Journal of Hydrology, 225, pp. 103–117, 1999. doi: http://dx.doi.org/10.1016/ S0022-1694(99)00167-5

[51] NERC, Flood Studies Report, vol. I, Natural Environment Research Council,  Whitefriars Press Ltd, London, 1975.

[52] Cunnane, C., A note on the Poisson assumption in partial duration series models. Water Resources Research, 15, pp. 489–494, 1979. doi: http://dx.doi.org/10.1029/ WR015i002p00489

[53] Beguería, S., Uncertainties in partial duration series modelling of extremes related to the choice of the threshold value. Journal of Hydrology, 303, pp. 215–230, 2005. doi: http://dx.doi.org/10.1016/j.jhydrol.2004.07.015

[54] Quintela, A.C., Curso Internacional de Hidrologia Operativa, vol. 2. Direcção-Geral dos Recursos e Aproveitamentos Hidráulicos, 1984 (in Portuguese).

[55] Silva, A.T., Portela, M.M. & Naghettini, M., Aplicação da técnica das séries de duração parcial à análise de frequência de variáveis hidrológicas aleatórias, 11º Congresso da Água, Associação Portuguesa dos Recursos Hídricos (APRH), Porto, 2012 (in Portuguese).

[56] Diggle, P., A kernel method for smoothing point process data. Applied Statistics, 34(2), pp. 138–147, 1985. doi: http://dx.doi.org/10.2307/2347366

[57] Mudelsee, M., Borngen, M., Tetzlaff, G. & Grnewald, U., No upward trends in the occurrence of extreme fl oods in central Europe. Nature, 425, pp. 166–169, 2003. doi: http://dx.doi.org/10.1038/nature01928

[58] Mudelsee, M., Borngen, M., Tetzlaff, G. & Grnewald, U., Extreme fl oods in central Europe over the past 500 years: role of cyclone pathway “Zugstrasse Vb”. Journal of Geophysical Research, 109, D23101, 2004, http://dx.doi.org/10.1029/2004JD005034

[59] Mudelsee, M., Deutsch, M., Borngen, M. & Tetzlaff, G., Trends in fl ood risk of the River Werra (Germany) over the past 500 years. Hydrological Sciences Journal, 51, pp. 818–833, 2006. doi: http://dx.doi.org/10.1623/hysj.51.5.818

[60] Cowling, A., Hall, P. & Phillips, M., Bootstrap confi dence regions for the intensity of a Poisson point process. Journal of the American Statistical Association, 91, pp. 1516–1524, 1996. doi: http://dx.doi.org/10.1080/01621459.1996.10476719

[61] Mudelsee, M., The bootstrap in climate risk analysis, In Extremis: Disruptive Events and Trends in Climate and Hydrology, ed. J.P. Kropp, H.J. Schellnhuber,  Springer-Verlag 

Berlim Heidelberg, Germany, pp. 45–58, 2011. doi: http://dx.doi.org/10.1007/978-3642-14863-7_2

[62] Hurrell, J., Kushnir, Y., Ottersen, G. & Visbeck, M., An overview of the North Atlantic oscillation, The North Atlantic Oscillation: Climatic Signifi cance and Environmental Impact, ed. J. Hurrell, Y. Kushnir, G. Ottersen, M. Visbeck, Geophysical Monograph, Vol. 134, AGU American Geophysical Union, pp. 1–36, 2003.

[63] Hurrell, J., Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science, 269, pp. 676–679, 1995. doi: http://dx.doi.org/10.1126/science.269.5224.676

[64] Trigo, R., Osborn, T. & Corte-Real, J., The North Atlantic Oscillation infl uence on Europe: climate impacts and associated physical mechanisms. Climate Research, 20, pp. 9–17, 2002. doi: http://dx.doi.org/10.3354/cr020009

[65] Rodríguez-Puebla, C., Encinas, A. & Sáenz, J., Winter precipitation over the Iberian Peninsula and its relationship to circulation indices. Hydrology and Earth System Sciences, 5, pp. 233–244, 2001, doi: http://dx.doi.org/10.5194/hess-5-233-2001

[66] Corte-Real, J., Qian, B. & Xu, H., Regional climate change in Portugal: precipitation variability associated with large-scale atmospheric circulation. International Journal of Climatology, 18, pp. 619–635, 1998. doi: http://dx.doi.org/10.1002/(SICI)1097-

0088(199805)18:6<619::AID-JOC271>3.0.CO;2-T

[67] Trigo, R., Osborn, T. & Corte-Real, J., Infl uência da Oscilação do Atlântico Norte no Clima do Continente Europeu e no Caudal dos Rios Ibéricos Atlânticos. Finisterra, 37, pp. 5–31, 2002.

[68] Trigo, R., Pozo-Vázquez, D., Osborn, T., Castro-Díez, Y., Gámiz-Fortis, S. & EstebanParra, M., North Atlantic Oscillation infl uence on precipitation, river fl ow and water resources in the Iberian Peninsula. International Journal of Climatology, 24, pp. 925–944, 2004. doi: http://dx.doi.org/10.1002/joc.1048

[69] Morán-Tejeda, E., López-Moreno, I., Ceballos-Barbancho, A. & Vicente-Serrano, S., Evaluating Duero’s basin (Spain) response to the NAO phases: spatial and seasonal variability. Hydrological Processes, 25, pp. 1313–1326, 2011. doi: http://dx.doi. org/10.1002/hyp.7907

[70] Lorenzo-Lacruz, J., Vicente-Serrano, S., López-Moreno, J., González-Hidalgo, J. & Morán-Tejeda, E., The response of Iberian rivers to the North Atlantic Oscillation. 

Hydrology and Earth System Sciences, 15, pp. 2581–2597, 2011, doi:10.5194/hess-152581-2011. doi: http://dx.doi.org/10.5194/hess-15-2581-2011

[71] Jones, P., Jonsson, T. & Wheeler, D., Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. 

International Journal of Climatology, 17, pp. 1433–1450, 1997. doi: http://dx.doi. org/10.1002/(SICI)1097-0088(19971115)17:13<1433::AID-JOC203>3.0.CO;2-P

[72] Silverman, B., Density estimation for statistics and data analysis, Vol. 26. Chapman & Hall/CRC, London, 1986. doi: http://dx.doi.org/10.1007/978-1-4899-3324-9

[73] Silva, A.T., Portela, M.M. & Naghettini, M., On peaks-over-threshold modeling of fl oods with zero-infl ated Poisson arrivals under stationarity and nonstationarity. Stochastic Environmental Research and Risk Assessment, SERRA, 28, pp. 1587–1599, 2014, doi 

10.1007/s00477-013-0813-z. doi: http://dx.doi.org/10.1007/s00477-013-0813-z