Chemical Exploitation of Metal Contaminated Biomass Produced in Phytoextraction

Chemical Exploitation of Metal Contaminated Biomass Produced in Phytoextraction

G. LOSFELD V. ESCANDE P. VIDAL DE LA BLACHE C. GRISON 

Centre d’Ecologie Fonctionnelle et Evolutive, UMR CNRS 5175, F34293 Montpellier, France

Agence de l’Environnement et de la Maîtrise de l’Energie, 20 avenue du Grésillé, BP 90406, 49004 Angers cedex 1

Ecole Polytechnique, route de Saclay, 91128 Palaiseau, France

Page: 
400–416
|
DOI: 
https://doi.org/10.2495/SDP-V9-N3-400–416
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

This article describes some aspects of the chemical recovery of the metal contaminated biomass produced in phytoextraction technologies. Taking advantage of the adaptive capacity of certain plants to hyperaccu-mulate metallic cations in their aerial parts, phytoextraction could be a sustainable way to remediate trace metals pollution. A possible exploitation of the metal contaminated biomass produced in phytoextraction is the direct use of metallic cations derived from plants as Lewis acid catalysts for organic chemistry. These original polymetallic systems serve as heterogeneous catalysts in chemical transformations enabling the synthesis of molecules with high added value. Results for Friedel-Crafts acylations and alkylations are presented in this paper: the acetylation of anisole and benzylation reactions are considered in more detail. The use of mine tailings as catalytic supports is also investigated: it could represent a new integrated outlet for tailings and phytoextraction products. Each step of the process is designed to minimise environmental impacts in accord with the principles of Green Chemistry. The process seeks to be an incentive for the economic development of phytoextraction. As phytoremediation gains momentum, it could also prove a concrete solution to the criticality of non-renewable mineral materials with new sources of zinc, nickel and other metals.

Keywords: 

Biomass, green and sustainable chemistry, heterogeneous catalysis, hyperaccumulator plants, phytoextraction, trace metals

  References

[1] Singh, O.V., Labana, S., Pandey, G. & Budhiraja, R. Phytoremediation: an overview of metallic ion decontamination from soil. Applied Microbiology and Biotechnology, 61(5–6), pp. 405–412, 2003. doi: http://dx.doi.org/10.1007/s00253-003-1244-4

[2] Hédouin, L., Pringault, O., Metian, M., Bustamante, P. & Warnau, M., Nickel bioaccumulation in bivalves from the New Caledonia lagoon: seawater and food exposure, Chemosphere, 66(8), pp. 1449–1457, 2007. doi: http://dx.doi.org/10.1016/j.chemosphere.2006.09.015

[3] Harada, M., Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. Critical Reviews in Toxicology, 25(1), pp. 1–24, 1995. doi: http://dx.doi. org/10.3109/10408449509089885

[4] Reeves, R.D. & Baker, A.J.M., Metal-accumulating plants. Phytoremediation of Toxic Metals: Using Plants to Clean up the Environment, eds. Ilya Raskin & Burt D. Ensley, John Wiley and Sons: New York, 2000.

[5] Xua, L., Zhou, S., Wu, L., Li, N., Cu, L., Luo, Y. & Christie, P., Cd and Zn tolerance and accu-mulation by Sedum jinianum in East China. International Journal of Phytoremediation, 11(3),

pp. 283–295, 2009. doi: http://dx.doi.org/10.1080/15226510802432744

[6] Jiang, J., Wu, L., Li, N., Luo, Y., Liu, L., Zhao, Q., Zhang, L. & Christie, P., Effects of multiple heavy metal contamination and repeated phytoextraction by Sedum plumbizincicola on soil microbial properties. European Journal of Soil Biology, 46(1), pp. 18–26, 2010. doi: http:// dx.doi.org/10.1016/j.ejsobi.2009.10.001

[7] Zhao, F.-J. Hamon, R.E., Lombi, E., McLaughlin, M.J. & McGrath, S.P., Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. Journal of Experimental Botany, 53(368), pp. 535–543, 2002. doi: http://dx.doi.org/10.1093/ jexbot/53.368.535

[8] Robinson, B.H., Leblanc, M., Petit, D., Brooks, R.R., Kirkman, J.H. & Gregg, P.E.H., The potential of Thlaspi caerulescens for phytoremediation of contaminated soils. Plant and Soil, 203(1), pp. 47–56, 1998. doi: http://dx.doi.org/10.1023/A:1004328816645

[9] Escarré, J., Lefèbvre, C., Raboyeau, S., Dossantos, A., Gruber, W., Cleyet-Marel, J.C., Frérot, H., Noret, N., Mahieu, S., Collin, C. & van Oort, F., Heavy Metal Concentration Survey in Soils

and Plants of the Les Malines Mining District (Southern France): implications for Soil Restoration. Water Air & Soil Pollution, 216, pp. 485–504, 2011. doi: http://dx.doi.org/10.1007/ s11270-010-0547-1

[10] Mahieu, S., Frérot, H., Vidal, C., Galiana, A., Heulin, K., Maure, L., Brunel, B., Lefèbvre, C., Escarré, J. & Cleyet-Marel, J.C., Anthyllis vulneraria/Mesorhizobium metallidurans, an efficient symbiotic nitrogen fixing association able to grow in mine tailings highly contaminated by Zn, Pb and Cd. Plant and Soil, 342(1–2), pp. 405–417, 2011. doi: http://dx.doi.org/10.1007/ s11104-010-0705-7

[11] Harbottle, M.J., Al-Tabbaa, A. & Evans, C.W., Assessing the true technical / environmental impacts of contaminated land remediation - a case study of containement, disposal and no-action. Land Contamination and Reclamation, 14, pp. 85–99, 2006. doi: http://dx.doi. org/10.2462/09670513.700

[12] Glass, D.J., Economic Potential of Phytoremediation, Phytoremediation of Toxic Metals: Using Plants to Clean up the Environment, eds. Ilya Raskin & Burt D. Ensley, John Wiley and Sons: New York, 2000.

[13] Berti W.R. & Cunningham, S.D., Phytostabilization of metals. Phytoremediation of Toxic Metals: Using Plants to Clean up the Environment, eds. B. Ensley & I. Raskin, John Wiley & Sons: New York, 1999. doi: http://dx.doi.org/10.1007/s11356-009-0205-6

[14] Bert, V., Seuntjens, P., Dejonghe, W., Lacherez, S., Thi Thanh Thuy, H. & Vandecasteele, B., Phytoremediation as a management option for contaminated sediments in tidal marshes, flood control areas and dredged sediment landfill sites. Environmental Science and Pollution Research, 16, pp. 745–764, 2009. doi: http://dx.doi.org/10.1007/s11356-009-0252-z

[15] Mench, M., Schwitzguébel, J.P., Schroeder, P., Bert, V., Gawronski, S. & Gupta, S., Assessment of successful experiments and limitations of phytotechnologies: contaminant uptake, detoxification and sequestration, and consequences for food safety. Environmental Science and Pollu-tion Research, 16(7), pp. 876–900, 2009. doi: http:://dx.doi.org/10.1007/s11368-010-0190-x

[16] Mench, M., Lepp. N., Bert, V., Schwitzguébel, J.P., Gawronski, S.W., Schröder, P. & Vangronsveld, J., Successes and limitations of phytotechnologies at field scale:outcomes, assessment and outlook from COST Action 859. Journal of Soils and Sediments, 6(10), pp. 1039–1070, 2010.

[17] Frérot, H., Lefèbvre, C., Gruber, W., Collin, C., Santos, A. & Escarré, J., Specific interactions between local metallicolous plants improve the phytostabilization of mine soils. Plant and Soil, 282(1–2), pp. 53–65, 2006. doi: http://dx.doi.org/10.1007/s11104-005-5315-4

[18] Li, Y.-M., Chaney, R.L., Brewer, E., Roseberg, R., Angle, J.S., Baker, A.J.M., Reeves, R.D. & Nelkin, J., Development of a technology for commercial phytoextraction of nickel: economic and technical considerations. Plant and Soil, 249(1), pp. 107–115, 2003. doi: http://dx.doi. org/10.1023/A:1022527330401

[19] Chaney, R.L., Angle, J.S., Mcintosh, M.S. & Reeves, R.D., Using hyperaccumulator plants to phytoextract soil Ni and Cd. Z. Naturforsch, 60c, pp. 190–198, 2005.

pp. Bani, A., Echevarria, G., Sulçe, S., Morel, J.-L. & Mullai, A., In-situ phytoextraction of Ni by a native population of Alyssum murale on an ultramafic site (Albania). Plant and Soil, 293(1–2), 79–89, 2007. doi: http://dx.doi.org/10.1007/s11104-007-9245-1

[21] Whiting, S.N., Reeves, R.D., Richards, D., Johnson, M.S., Cooke, J.A., Malaisse, F., Paton, A., Smith, J.A.C., Angle, J.S., Chaney, R.L., Ginicchio, R., Jaffré, T., Johns, R., Mcintyre, T., Purvis, O.W., Salt, D.E., Schat, H., Zhao, F.J. & Baker, A.J.M., Research priorities for conservation of metallophyte biodiversity and their potential for restoration and site reme-diation. Restoration Ecology, 12(1), pp. 106–116, 2004. doi: http://dx.doi.org/10.1111/j.1061-2971.2004.00367.x

pp. Sas-Nowosielska, A., Kucharski, R., Malkowski, E., Pogrzeba, M., Kuperberg, J.M. & Krynski, K., Phytoextraction crop disposal—an unsolved problem. Environmental Pollution, 128(3), 373–379, 2004. doi: http://dx.doi.org/10.1016/j.envpol.2003.09.012

[22] Van Ginneken, L., Meers, E., Guisson, R., Ruttens, A., Elst, K., Tack, F.M.G., Vangronsveld, J., Diels, L. & Dejonghe, W., Phytoremediation for heavy metal-contaminated soils combined with bioenergy production. Journal of Environmental Engineering and Landscape Manage-ment, 15(4), pp. 227–236, 2007.

[23] Brooks, R.R., Chambers, M.F., Nicks, L.J. & Robinson, B.H., Phytomining. Trends in Plant Science, 3(9), pp. 359–362, 1998. doi: http://dx.doi.org/10.1016/S1360-1385(98)01283-7

[24] Chaney, R.L. Li, Y.-M., Brown, S.L., Homer, F.A., Malik, M., Angle, J.S., Baker, A.J.M., Reeves, R.D. & Chin, M., Chapter 7. Improving metal hyperaccumulator wild plants to develop commercial phytoextraction systems. Phytoremediation of Contaminated Soil and Water, ed. Norman Terry, CRC Press: Boca Raton, 2000, p. 408.

[25] Tang, M., Hu, F., Wu, L., Luo, Y., Jiang, Y., Tan, C., Li, N., Li, Z. & Zhang, L., Effects of copper-enriched composts applied to copper-deficient soil on the yield and copper and zinc uptake of wheat. International Journal of Phytoremediation, 11(1), pp. 81–93, 2009. doi: http://dx.doi.org/10.1080/15226510802363535

[26] Qu, J., Yuan, X., Wang, X. & Shao, P., Zinc accumulation and synthesis of ZnO nanoparticles using Physalis alkekengi L. Environmental Pollution, 159(7), pp. 1783–1788, 2010. doi: http:// dx.doi.org/10.1016/j.envpol.2011.04.016

[28] Thewys T. & Kuppens, T., Economics national Journal of Phytoremediation, of willow pyrolysis after phytoextraction. Inter-10(6),  pp. 561–583,  2008.  doi:  http://dx.doi.org/10.1080/15226510802115141

[29] Meers, E., Vandecasteele, B., Ruttensc, A., Vangronsveld, J. & Tack, F.M.G., Potential of five willow species (Salix spp.) for phytoextraction of heavy metals. Environmental and Experi-mental Botany, 60(1), pp. 57–68, 2007. doi: http://dx.doi.org/10.1016/j.envexpbot.2006.06.008

[30] Lievens, C., Yperman, J., Vangronsveld, J. & Carleer, R., Study of the potential valorisation of heavy metal contaminated biomass via phytoremediation by fast pyrolysis: part I. Influence of temperature, biomass species and solid heat carrier on the behaviour of heavy metals. Fuel, 87(10–11), pp. 1894–1905, 2008. doi: http://dx.doi.org/10.1016/j.fuel.2007.10.021

[31] Chaney, R.L., Angle, J.S., Baker, A.J.M. & Li, Y.M., Method for phytomining of Nickel, Cobalt and other metals from soils. US Patent, 5, pp. 711–784, 1998.

[32] Grison, C. & Escarré, J., Utilisation de plantes accumulatrices d’éléments traces métalliques pour la mise en oeuvre de réactions chimiques. International Patent WO 2011/064462, Juin 3, 2011.

[33] Grison, C. & Escarré, J., Utilisation de plantes accumulatrices d’éléments traces métalliques pour la mise en oeuvre de réactions chimiques. International Patent WO 2011/064487, juin 3, 2011.

[34] Losfeld, G.,Vidal de la Blache, P., Escande, V. & Grison, C., Lewis acid catalysts: a potential exploitation for zinc and nickel phytoextraction. Environmental Impact, WIT Press: South-ampton, 2012.

[35] Shirakashi, T. & Kubo, T., Cation distribution in franklinite by nuclear magnetic resonance. American Mineralogist, 64(5–6), pp. 599–603, 1979.

[36] Pence, N.S., Larsen, P.B., Ebbs, S.D., Letham, D.L.D., Lasat, M.M., Garvin, D.F., Eide, D. & Kochian, L.V., The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proceedings of the National Academy of Science of the United States of America, 97(9), pp. 4956–4960, 2000. doi: http://dx.doi.org/10.1073/pnas.97.9.4956

[37] Tolrà, R.P., Poschenrieder, C. & Barceló, J., Zinc hyperaccumulation in Thlaspi caerulescens. II. Influence on organic acids. Journal of Plant Nutrition, 19(12), pp. 1541–1550, 1996. doi: http://dx.doi.org/10.1080/01904169609365220

[38] Jaffré, T., Perrier, N., Colin, F., Ambrosia, J.-P., Roseb, J. & Bottero, J.-Y., Nickel speciation in Sebertia acuminata, a plant growing on a lateritic soil of New Caledonia. Surface Geosciences (Pedology), 336(6), pp. 567–577, 1976.

[39] European Commission, Reach in Brief. Environmental Directorate General, 2007.

[40] Anastas, P.T. & Warner, J.C., Green Chemistry: Theory and Practice, Oxford University Press: New York, 1998.

[41] Anastas, P.T., Kirchhoff, M.M. & Williamson, T.C., Catalysis as a foundational pillar of green chemistry. Applied Catalysis A: General, 221(1–2), pp. 3–13, 2001doi: http:://dx.doi. org/10.1016/S0926-860X(01)00793-1

[42] Doble, M. & Kruthienti, A. K., Green Chemistry and Engineering, 1st edn., Elsevier: New York, 2007.

[43] Tundo, P., Perosa, A. & Zecchini, F., Methods and Reagents for Green Chemistry. Wiley: USA, 2007. doi: http://dx.doi.org/10.1002/9780470124086

[44] Friedel, C. & Crafts, J.M., Sur une nouvelle méthode générale de synthèse d’hydrocarbures, d’acétones. Comptes rendus hebdomadaires des séances de l’Académie des sciences, 84, pp. 1392–1395, 1877.

[45] Dasgupta, S. & Török, B., Environmentally benign contemporary Friedel-Crafts chemis-try by solid acids. Current Organic Synthesis, 5(4), pp. 321–342, 2008. doi: http://dx.doi. org/10.2174/157017908786241572

[46] Clark, J.H. & Macquarrie, D.J., Heterogeneous catalysis in liquid phase transformations of importance in the industrial preparation of fine chemicals. Organic Process Research & Development, 1(2), pp. 149–162, 1997. doi: http://dx.doi.org/10.1021/op960008m

[47] Corma, A. & Garcia, H., Lewis acids: from conventional homogeneous to green homogeneous and heterogeneous catalysis. Chemical Reviews, 103(11), pp. 4307–4366, 2003. doi: http:// dx.doi.org/10.1021/cr030680z

[48] Van den Eynde, J.-J., Mayence, A. & van Haverbeke, Y., Ultrasound promoted benzylation of arenes in the presence of zinc chloride mixed with a K10 clay. Tetrahedron Letters, 36(18), pp. 3133–3136, 1995. doi: http://dx.doi.org/10.1016/0040-4039(95)00472-O

[49] Cseri, T., Békássy, S., Figueras, F. & Rizner, S., Benzylation of aromatics on ion-exchanged clays. Journal of Molecular Catalysis A: Chemical, 98(2), pp. 101–107, 1995. doi: http:// dx.doi.org/10.1016/1381-1169(95)00016-X

[50] Choudhary, V.R., Jhaa, R. & Narkhedea, V.S., In-Mg-hydrotalcite anionic clay as catalyst or catalyst precursor for Friedel–Crafts type benzylation reactions. Journal of Molecular Catalysis A: Chemical, 239(1–2), pp. 76–81, 2005. doi: http://dx.doi.org/10.1016/j.molcata.2005.06.003

[51] Spagnol, M., Gilbert, L., Benazzi, E. & Marcilly, C., Procédé d’acylation d’éthers aromatiques. Brevet Européen PCT/FR96/00717, 1998.

[52] Gupta, R., Kumar, V., Gupta, M., Paul, S. & Gupta, R., Silica supported zinc chloride cat-alyzed acetylation of amines, alcohols and phenols. Indian Journal of Chemistry, 47(B), pp. 1739–1743, 2008.