Vitrified Forts as Anthropogenic Analogues for Assessment of Long-Term Stability of Vitrified Waste in Natural Environments

Vitrified Forts as Anthropogenic Analogues for Assessment of Long-Term Stability of Vitrified Waste in Natural Environments

R. Sjöblom H. Ecke E. Brännvall 

Division of Waste Science and Technology, Luleå University of Technology, Sweden

Vattenfall Research and Development AB, Sweden

| |
| | Citation



The area’s natural analogues, vitrified forts, combustion technology, and vitrified waste have been reviewed. The purpose was to identify if investigations of vitrified rock in hill forts might be warranted for assessing the long-term integrity of vitrified waste in natural environments. Wastes that are being vitrified include ash from incineration of domestic waste, contaminated soil and fission products from reprocessing of spent nuclear fuel. It was found that vitrified materials in at least 200 hill forts constitute good anthropogenic analogues to vitri- fied waste. The compositions vary considerably from site to site and even within one site and may correspond relatively well to the spans of parameters in the various vitrified wastes. Glasses in vitrified forts compare favourably to archaeological artefacts which are soda- and potash-based and consequently have different cor- rosion behaviours and may weather too quickly. Natural glasses might be too limited in composition variation and are perhaps also too durable. Combustion technology considerations based on quality of heat analyses indicate that at least some of the vitrifications of hill forts were carried out with the specific purpose of achiev- ing strong and durable constructions. This makes it considerably easier to envisage how the vitrifications might have been carried out, and this, in turn, facilitates comparisons between anthropogenic analogues and modern vitrified wastes.


analogue, glass, hill fort, leaching, long-term, vitrification, waste


[1] Guiding Principles Concerning International Economic Aspects of Environmental Policies, Council Recommendation C(72)128, OECD, Paris, 26 May 1972.

[2] Brundtland, G., Chairman, Our Common Future (The Brundtland report). World Commission on environment and Development, Oxford University Press: Oxford, United Kingdom, 1987.

[3] The Swedish Environmental Code. English translation. Ds 2000:61. (In Swedish Miljöbalk, SFS 1998:808).

[4] Lindskog, S. & Sjöblom, R., Implementation of the polluter pays principle - example of plan- ning for decommissioning. Environmental economics and investment assessment III, 3–5 May 2008, limassol, cyprus. WIT Transactions on Ecology and the Environment, 131, pp. 235–246, 2010.

[5] Sakai, S. & Hiraoka, M., Municipal solid waste incinerator residue recycling by thermal pro- cesses. Waste Management, 20, pp. 249–258, 2000. doi: (99)00315-3

[6] Ecke, H., Sakanakura, H., Matsuto, T., Tanaka, N. & Lagerkvist, A., State-of-the-art treatment process for municipal solid waste incineration residues in Japan. Waste Management and Re- search, 18, pp. 41–51, 2000.

[7] Christensen, T.H., (ed), Solid Waste Technology & Management, John Wiley and Sons: Chichester, 2011.

[8] Disposal of waste. Handbook with general advice to the ordinance (SFS 2001:512) on disposal of waste and to chapter 15 § 34 in the Environmental Code (SFS 1998:808). (In Swedish). Swedish Environmental Protection Agency, 2004.

[9] Sjöblom, R., Tillämpning av avfallsförordningen SFS 2001:1063; Bidrag till kunskaps- basen avseende förbränningsrester. (Implementation of the Swedish ordinance of waste SFS 2001:1063. Contribution to the knowledge base on residues from combustion and incinera- tion, in Swedish). Miljöriktig användning av askor: Värmeforsk, Sweden, Report number 1103, March 2009.

[10] Sjöblom, R., Hydrogen bond studies 112. Molecular reorientations in some hydrogen bonded solids. Acta Universitatis Upsaliensis, Abstracts of Uppsala dissertations from the Faculty of Science 350, 1975.

[11] Ralston I., Celtic fortifications. Tempus Publishing Ltd.: Stroud, UK, 2000.

[12] M’Hardy, A.B., On vitrified forts, with results of experiments as to the probable manner in which their vitrification may have been produced. Proc Soc Antiq Scot 40, pp. 136–150, 1906.

[13] Kresten P., The vitrified forts of Europe: saga, archaeology, and geology. Applied Mineralogy: Developments in Science and Technology: Proceedings of the 8 International Congress on Applied Mineralogy (ICAM2004), eds. M. Peccio, FRD. Andrade, LZD D’Agostino, H. Kahn, LM.Sant’ Agostino and MMML Tassinari, International Council for Applied Mineralogy do Brasil, São Paolo, Vol. 1, pp. 355–357, 2004.

[14] Hewlett, P.C., Lea’s Chemistry of Cement and Concrete, 4th Edition. Butterworth-Heinemann: Oxford, 2001.

[15] Hydrauliskt kalkbruk. Produktion och användning i Sverige vid byggande från medeltid till nutid. (Hydraulic lime mortar. Its production and utilisation in Sweden in buildings from the middle ages until the present time, in Swedish but with an extensive summary in English). Chalmers University of Technology and Göteborg University. Göteborg studies in conserva- tion No 20. Printed at the Reproservice AB in Göteborg: Sweden, 2007.

[16] MacKie, E.W., The vitrified forts of Scotland. Hillforts, Later Prehistoric Earthworks in Brit- ain and Ireland, ed. D.W. Harding, Academic Press: London, pp. 205–235, 1976.

[17] Kresten, P. & Ambrosiani, B., Swedish vitrified forts – a reconnaissance study. Fornvännen, 87, pp. 1–17, 1992.

[18] Kresten, P., Goedicke, C. & Manzano, A., TL - dating of vitrified material. Geochimometria. Journal on Methods and Applications of Absolute Chronology, 22, pp. 9–14, 2003.

[19] Kresten, P., Kero, L. & Chryssler, J., Geology of the vitrified hill-fort Broborg in Uppland, Sweden. Geologiska Föreningen i Stockholm Förhandlingar, 115, pp. 13–24, 1993. doi: http://

[20] Diaz-Martinez, E., Soares, A.M.M., Kresten, P. & Glazovskya, L., Evidence for wall vitrifica- tion at the Late Bronze Age settlement of Passo Alto (Vila Verde de Ficalho, Serpa, Portugal). Rev Port Arqueol, 8, pp. 151–161, 2005.

[21] Friend, C.R.L., Charnley, N.R., Clyne, H. & Dye, J., Experimentally produced glass compared with that occurring at The Torr, NW Scotland, UK: vitrification through biotite melting. Journal of Archaeological Science, 35(12), pp. 3130–3143, 2008. doi: j.jas.2008.06.022

[22] Youngblood, E., Fredriksson, B.J., Kraut, F. & Fredriksson, K., Celtic vitrified forts: implica- tions of a chemical-petrological study of glasses and source rocks. J. Arch. Sci., 5, pp. 99–121, 1978. doi:

[23] Friend, C.R.L., Dye, J. & Fowler, M.B., New field and geochemical evidence from vitrified forts in South Morar and Moidart, NW Scotland: further insight into melting and the process of vitrification. Journal of Archaeological Science, 34, pp. 1685–1701, 2007. doi: http://dx.doi. org/10.1016/j.jas.2006.12.007

[24] Dobran, F., Volcanic Processes, Mechanisms in Material Transport. Kluwer academic: New York, 2001. doi:

[25] Spear, S.S., Metamorphic Phase equilibria and pressure-temperature-time paths. Printed by BookCrafters, Inc.: Mineralogical Society of America: Chelsea, Michigan, USA, 1995.

[26] Le Bourhis, E., Glass. Mechanics and Technology, Wiley-VCH Verlag GmbH & Co.: 2008.

[27] Ojovan, M.I. & Lee, W.E., An Introduction to Nuclear Waste Immobilisation. Elsevier Ltd.: Amsterdam, 2005.

[28] Oleson, J.P. (ed), The Oxford handbook of engineering and technology in the classical world. Oxford University Press: 2008.

[29] Arrhenius, S., Kemin och det moderna livet. (Chemistry and the modern life, in Swedish). Hugo Gebers Förlag: Stockholm, 1919.

[30] Charcoal. In: Gerhartz, W. (Executive Editor), Ullmann’s encyclopedia of industrial chemistry, 5th edn, A6. VCH Verlagsgesellschaft mbH: Weinheim, 1986.

[31] Oates, J.A.H., Lime and Limestone, Wiley-VCH: Weinheim, 1998.

[32] Karlebo handbok. Maskinaktiebolaget Karlebo: Stockholm, 1936.

[33] Lide, D.R. (ed), CRC Handbook of Chemistry and Physics, CRC Press: London, 2003.

[34] Amutha Rani, D., Gomez, E., Boccaccini, A.R., Hao, L., Deegan, D. & Cheeseman, C.R. Plasma treatment of air pollution control residues. Waste Management, 28(7), pp. 1254–1262, 2008. doi:

[35] Karlfeldt, K., Characterisation and speciation of metals in ash. Thesis for the degree of li- centiate of philosophy. Department of Chemical and Biological Engineering and Division of Environmental Inorganic Chemistry, Chalmers University of Technology: Göteborg, Sweden, 2006.

[36] Clarke, L.B. & Sloss, L.L., Trace elements – emissions from coal combustion and gasification. IEACR/49. IEA Clean Coal Centre: London, UK, pp. 111, 1992.

[37] Sloss, L.L., Trace elements and fly ash utilisation. IEA Clean Coal Centre: London, 2007.

[38] Chandler, A.J., Eighmy T.T, et al. (eds), Municipal solid waste incineration residues. The Inter- national Ash Working Group. Studies in Environmental Science 67. Elsevier, 1997.

[39] Kuo, Y-M., Huang, K-L., Wang, C-T. & Wang, J-W. Effect of Al2O3 mole fraction and cool- ing method on vitrification of an artificial hazardous material. Part 1: Variation of crystalline phases and slag structures. Journal of Hazardous Materials, 169(1–3), 626–634, 2009. doi:

[40] Yang, Y., Xiao, Y., Voncken, J.H.L. & Wilson, N. Thermal treatment and vitrification of boiler ash from a municipal solid waste incinerator. Journal of Hazardous Materials, 154(1–3), pp 871–879, 2008.

[41] Lin, K.L., Huang, W.J., Chen, K.C., Chow, J.D. & Chen, H.J. Behaviour of heavy metals immobilized by co-melting treatment of sewage sludge ash and municipal solid waste incin- erator fly ash. Waste Management & Research, 27(7), pp. 660–667, 2009. doi: http://dx.doi. org/10.1177/0734242X09103826

[42] Garcia-Valles, M., Avila, G., Martinez, S., Terradas, R. & Nogues, J. M. Heavy metal-rich wastes sequester in mineral phases through a glass-ceramic process. Chemosphere, 68(10), pp. 1946–1953, 2007. doi:

[43] Li, C.T., Lee, W.J., Huang, K.L., Fu, S.F. & Lai, Y.C. Vitrification of chromium electroplating sludge. Environmental Science & Technology, 41(8), pp. 2950–2956, 2007. doi: http://dx.doi. org/10.1021/es062803d

[44] Karamanov, A., Aloisi, M. & Pelino, M. Vitrification of copper flotation waste. Journal of Hazardous Materials, 140(1–2), pp. 333–339, 2007. doi: 2006.09.040

[45] Romero, M., Hernández-Crespo, M.S. & Rincón, J.M. Leaching behaviour of a glassy slag and derived glass ceramics from arc plasma vitrification of hospital wastes. Advances in Applied Ceramics: Structural, Functional & Bioceramics, 108(1), pp. 67–71, 2009.

[46] Sobiecka, E., Cedzynska, K. & Smolinska, B. Vitrification as an alternative method of medical waste stabilization. Fresenius Environmental Bulletin, 19(12A), pp. 3045–3048, 2010.

[47] Stoch, L., Procyk, B. & Stoch, P. Thermochemistry of vitrified waste incineration ashes crystal- lization. Journal of Thermal Analysis and Calorimetry, 97(1), pp. 197–201, 2009. doi: http://

[48] Basegio, T., Leao, A.P.B.,  Bernardes, A.M. & Bergmann, C.P. Vitrification: An alternative  to minimize environmental impact caused by leather industry wastes. Journal of Hazardous Materials, 165(1–3), pp. 604–611, 2009. doi:

[49] Saffarzadeh, A., Shimaoka, T., Motomura, Y. & Watanabe, K. Characterization study of heavy metal-bearing phases in MSW slag. Journal of Hazardous Materials, 164(2–3), pp. 829–834, 2009. doi:

[50] Ecke, H., Sakanakura, H., Matsuto, T., Tanaka, N. & Lagerkvist, A. State-of-the-art treatment processes for municipal solid waste incineration residues in Japan. Waste Management Re- search, 18(1), pp. 41–51, 2000.

[51] Zhao, P., Ni, G. H., Jiang, Y.M., Chen, L.W., Chen, M.Z. & Meng, Y.D. Destruction of inorgan- ic municipal solid waste incinerator fly ash in a DC arc plasma furnace. Journal of Hazardous Materials, 181(1–3), pp. 580–585, 2010. doi:

[52] Tu, X., Yu, L., Yan, J.H., Cen, K.F. & Cheron, B.G., Plasma vitrification of air pollution con- trol residues from municipal solid-waste incineration. Ieee Transactions on Plasma Science, 38(12), pp. 3319–25, 2010. doi:

[53] Wang, Q., Yan, J.H., Chi, Y., Li, X.D. & Lu, S.Y. Application of thermal plasma to vitrify fly ash from municipal solid waste incinerators. Chemosphere, 78(5), pp 626–630, 2010. doi:

[54] Roether, J.A., Daniel, D.J., Amutha Rani, D., Deegan, D.E., Cheeseman, C.R. & Boccaccini, A.R. Properties of sintered glass-ceramics prepared from plasma vitrified air pollution control residues. Journal of Hazardous Materials, 173(1–3), pp. 563–569, 2010. doi: http://dx.doi. org/10.1016/j.jhazmat.2009.08.123

[55] Zhao, P., Meng, Y.D., Yu, X.Y., Chen, L.W., Jiang, Y.M., Ni, G.H. & Chen, M.Z. Energy bal- ance in DC arc plasma melting furnace. Plasma Science & Technology, 11(2), pp. 206–210, 2009. doi:

[56] Wang, Q., Yan, J.H., Tu, X., Chi, Y., Li, X.D., Lu, S.Y. & Cen, K.F. Thermal treatment of municipal solid waste incinerator fly ash using DC double arc argon plasma. Fuel, 88(5),    pp. 955–958, 2009. doi:

[57] Kuo, Y-M., Tseng, H-J., Chang, J-E., Wang, J-W., Wang, C-T. & Chen, H-T. An alternative ap- proach for reusing slags from a plasma vitrification process. Journal of Hazardous Materials, 156(1–3), pp. 442–447, 2008. doi:

[58] Kuo, Y.M., Wang, C.T., Tsai, C.H. & Wang, L.C. Chemical and physical properties of plas- ma slags containing various amorphous volume fractions. Journal of Hazardous Materials, 162(1), pp. 469–475, 2009. doi:

[59] Cheng, T.W., Huang, M.Z., Tzeng, C.C., Cheng, K.B. & Ueng, T.H. Production of coloured glass-ceramics from incinerator ash using thermal plasma technology. Chemosphere, 68(10), pp. 1937–1945, 2007. doi:

[60] Gomez, E., Rani, D.A., Cheeseman, C.R., Deegan, D., Wise, M. & Boccaccini, A.R. Thermal plasma technology for the treatment of wastes, pp A critical review. Journal of Hazardous Materials, 161(2–3), pp. 614–626, 2009. doi:

[61] Yang, J.K., Xiao, B. & Boccaccini, A.R. Preparation of low melting temperature glass-ceramics from municipal waste incineration fly ash. Fuel, 88(7), pp. 1275–1280, 2009. doi: http://dx.doi. org/10.1016/j.fuel.2009.01.019

[62] Fruergaard, T., Hyks, J. & Astrup, T. Life-cycle assessment of selected management options for air pollution control residues from waste incineration. Science of The Total Environment, 408(20), pp. 4672–4680, 2010. doi:

[63] da Silveira, F.Z., Pich, C.T., Angioletto, E. & Bernardin, A.M. Ecotoxicological analysis of glasses obtained from industrial residues using E. coli and S. aureus as bioindicators. Mate- rials Science and Engineering: C, 31(2), pp. 276–280, 2011. doi: j.msec.2010.09.011

[64] Sakai, S-i. & Hiraoka, M., Municipal solid waste incinerator residue recycling by thermal processes. Waste Management, 20(2–3), pp. 249–258, 2000. doi: S0956-053X(99)00315-3

[65] Ecke, H., Sakanakura, H., Matsuto, T., Tanaka, N. & Lagerkvist, A., The effect of electric arc vitrification of bottom ash on the mobility and fate of metals. Environmental Science & Tech- nology, 35(7), pp. 1531–1536, 2001. doi:

[66] Oresek, N., Berk, F., Samec, N. & Zupanic, F. Fly ash immobilization with vitrification. Mate- riali in Tehnologije, 44(6), pp. 373–378, 2010.

[67] Lin, K.L. & Chang, C.T., Leaching characteristics of slag from the melting treatment of municipal solid waste incinerator ash. Journal of Hazardous Materials, 135(1–3), pp. 296– 302, 2006. doi:

[68] Kuo, Y.M., Wang, J.W. & Tsai, C.H. Encapsulation behaviors of metals in slags containing various amorphous volume fractions. Journal of the Air & Waste Management Association, 57(7), pp. 820–827, 2007. doi:

[69] Yang, Y., Xiao, Y., Wilson, N. & Voncken, J.H.L., Thermal behaviour of ESP ash from munici- pal solid waste incinerators. Journal of Hazardous Materials, 166(1), pp. 567–575, 2009. doi:

[70] Kuo, Y.M., Wang, J.W., Chao, H.R., Wang, C.T. & Chang-Chien, G.P. Effect of cooling rate and basicity during vitrification of fly ash Part 2. On the chemical stability and acid resis- tance of slags. Journal of Hazardous Materials, 152(2), pp. 554–562, 2008. doi: http://dx.doi. org/10.1016/j.jhazmat.2007.07.017

[71] Monteiro, R.C.C., Alendouro, S.J.G., Figueiredo, F.M.L., Ferro, M.C. & Fernandes, M.H.V., Development and properties of a glass made from MSWI bottom ash. Journal of Non-Crystalline Solids, 352(2), pp. 130–135, 2006. doi:

[72] Monteiro, R.C.C., Figueiredo, C.F., Alendouro, M.S., Ferro, M.C., Davim, E.J.R. & Fernandes, M.H.V. Characterization of MSWI bottom ashes towards utilization as glass raw material. Waste Management, 28(7), pp. 1119–1125, 2008. doi: 2007.05.004

[73] Ferraris, M., Salvo, M., Ventrella, A., Buzzi, L. & Veglia, M. Use of vitrified MSWI bottom ashes for concrete production. Waste Management, 29(3), pp. 1041–1047, 2009. doi: http://

[74] Vasilopoulos, K.C., Tulyaganov, D.U., Agathopoulos, S., Karakassides, A., Ribeiro, M., Fer- reira, J.M.F. & Tsipas, D. Vitrification of low silica fly ash: suitability of resulting glass ceram- ics for architectural or electrical insulator applications. Advances in Applied Ceramics, 108(1), pp. 27–32, 2009. doi:

[75] Bassani, M., Santagata, E., Baglieri, O., Ferraris, M., Salvo, M. & Ventrella, A., Use of vitri- fied bottom ashes of municipal solid waste incinerators in bituminous mixtures in substitution of natural sands. Advances in Applied Ceramics, 108(1), pp. 33–43, 2009. doi: http://dx.doi. org/10.1179/174367608X364285

[76] Handbook. Vitrification technologies for treatment of hazardous and radioactive waste. U. S. Environmental Protection Agency, EPS/625/R-92/002, May 1992.

[77] Campbell, B., Thompson, L. & Finucane, K., Geomelt vitrification: Status of recent developments and project results. ICEM’05: the 10th International Conference on Envi- ronmental Remediation and Radioactive Waste Management. September 4–8, Glasgow, Scotland.

[78] Luey, J., Roberts, J.S. & Timmerman, C.L., Implementation of in situ vitrification for con- taminated soils. Presented at the American Institute of Chemical Engineers National Summer Meeting, August 15–18, 1993, Seattle Washington, USA.

[79] Thompson, L., Huddleston, G., Reichhart, D., Jones, J., Springer, M. & Campbell. B., Results from the non-traditional (sub-surface) in situ vitrification demonstration for mixed waste ap- plications at the los Alamos National Laboratory. WM’01 Conference, February 25-March 1, 2001, Tucson, Arizona, USA.

[80] White, W.B., Theory of corrosion of glass and ceramics. Corrosion of glass, ceramics and ce- ramic superconductors. Principles, testing, characterization and applications, eds. D.E. Clark & B.K. Zoitos, Noyes Publications: Park Ridge, New Yersey, USA, 1992.

[81] Grambow, B., Geochemical approach to glass dissolution. Corrosion of glass, ceramics and ceramic superconductors. Principles, testing, characterization and applications, eds. D.E. Clark, & B.K. Zoitos, Noyes Publications: Park Ridge, New Yersey, USA, 1992. ISBN 0-8155- 1283-X.

[82] H. T. Scheffers chemiske föreläsningar. (Mr H. T. Scheffer’s chemical lectures, in Swedish). Lectures held at around 1750. Notes made by his student Alströmer, comments added later by Torbern Bergman. Printed at Joh. Edman, Royal Academy, 1775. Printing financed by M. Swederi.

[83] Plodinec, M.J., Wicks, G.G. & Bibler, N.E., An Assessment of Savannah River Borosilicate Glass in the Repository Environment. DP-1629, Savannah River Laboratory: Aiken, South Carolina, 1982.

[84] Jantzen, C.M., Thermodynamic approach to glass corrosion. Corrosion of Glass, Ceramics and Ceramic Superconductors. Principles, Testing, Characterization and Applications, eds. D.E. Clark, & B.K. Zoitos, Noyes Publications: Park Ridge, New Yersey, USA, 1992.

[85] Jercinovic, M.J. & Ewing, R.C., Corrosion of geological and archaeological glasses. Corrosion of Glass, Ceramics and Ceramic Superconductors. Principles, Testing, Characterization and Applications, eds. D.E. Clark & B.K. Zoitos, Noyes Publications: Park Ridge, New Yersey, USA, 1992.

[86] McLoughlin, S.D., Hyatt, N.C., Hand, R.J. & Lee, W.E., Corrosion of archaeological model glasses after 32 years of burial at Ballidon. Mat Res Soc Symp Proc 932, 2006.