Infrastructure Management Methodologies in Risk Situations

Infrastructure Management Methodologies in Risk Situations

J.R. Marques M. da Conceição Cunha 

Department of Civil Engineering, Coimbra University, Portugal

Page: 
1-12
|
DOI: 
https://doi.org/10.2495/SDP-V6-N1-1-12
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

Water supply systems (WSS) are complex but vitally important infrastructures in today’s societies. They are exposed to various risk situations from natural disasters and human failings, but criminal acts can also compromise their operations and cause substantial economic and social damage. Several publications on how to tackle these concerns have appeared in the last few years. This paper presents the state of the art in terms of the vulnerabilities, risks, interdependencies and optimization models inherent to WSSs. It further describes the robust optimization method used in engineering systems and in actual WSSs. Finally, the ways in which robustness is included, as described in case studies, are systematized and some conclusions are drawn.

Keywords: 

risk, robust optimization, vulnerability, water supply systems

  References

[1] Parfomak, P.W., Guarding America: Security Guards and U.S. Critical Infrastructure Protection, Congressional Research Service. CRS Report for Congress, 2004.

[2] Haimes, Y.Y., Sustainable operation of threatened infrastructures. Journal of Infrastructure Systems, ASCE, Viewpoint, 4(1), pp. 1–4, 1998.

[3] Danneels, J.J. & Finley, R.E., Assessing the vulnerabilities of U.S. drinking water systems. Journal of Contemporary Water Research and Education, 129(1), pp. 8–12, 2004. doi:10.1111/j.1936-704X.2004.mp129001003.x

[4] Haimes, Y.Y., Matalas, N.C., Lambert, J.H., Jackson, B.A. & Fellows, J.F.R., Reducing vulnerability of water supply systems to attack. Journal of Infrastructure Systems, ASCE, 4(4),pp. 164–177, 1998. doi:10.1061/(ASCE)1076-0342(1998)4:4(164)

[5] Matalas, N.C., Acts of nature and potential acts of terrorists: contrast relative to water resource systems. Journal of Water Resources Planning and Management, ASCE, Editorial, 131(2), pp. 79–80, 2005.

[6] Viera, J.M.P., Valente, J.C.T., Peixoto, F.M.S.P.M. & Morais, C.M.G.D., Elaborao e implementao de planos de contingência em sistemas de abastecimento de águas. Associao Portuguesa dos Recursos Hídricos, 8° Congresso da água, 2006 (in Portuguese).

[7] Meinhardt, P.L., Water and bioterrorism: preparing for the potential threat to U.S. water supplies and public health. Annual Review Public Health, 26, pp. 213–237, 2005. doi:10.1146/annurev.publhealth.24.100901.140910

[8] ICE (Institution of Civil Engineers), Megacities: Reducing Vulnerability to Natural Disaster, Thomas Telford Services Ltd., 1995.

[9] WHO (World Wealth Organization), Natural Disaster Mitigation in Drinking Water and Sewerage Systems – Guidelines for Vulnerability Analysis, PAH O: Washington, DC, p. 110, 1998.

[10] OFPP (Office Fédéral de la Protection de la Population), Catastrophes et situation d’urgence en Suisse: une appréciation des risques du point de vue de la protection de la population. Berne, Office fédéral de la protection de la population, 2003.

[11] Ezell, B.C., Farr, J.V. & Wiese, I., Infrastructure risk analysis model. Journal of Infrastructure Systems, 6(3), pp. 114–117, 2000. doi:10.1061/(ASCE)1076-0342(2000)6:3(114)

[12] Ezell, B.C., Farr, J.V. & Wiese, I., Infrastructure risk analysis of municipal water distribution system. Journal of Infrastructure Systems, 6(3), pp. 118–122, 2000. doi:10.1061/(ASCE)1076-0342(2000)6:3(118)

[13] Tidwell, V.C., Cooper, J.A. & Silva, C.J., Threat assessment of water supply systems using Markov latent effects modelling. Journal of Water Resources Planning and Management, ASCE, 131(3), pp. 218–227, 2005. doi:10.1061/(ASCE)0733-9496(2005)131:3(218)

[14] Kunreuther, H., Cyr, C., Grossi, P. & Tao, W., Using Cost-Benefit Analysis to Evaluate Mitigation for Lifeline Systems, 2002 [Online]. Available from: http://opim.wharton.upenn.edu/risk/downloads/01-14-HK .pdf [Accessed 1 October 2009].

[15] Chang, S.E., Evaluating disaster mitigations: methodology for urban infrastructure systems. Natural Hazards Review, 4(4), pp. 186–196, 2003. doi:10.1061/(ASCE)1527-6988(2003)4:4(186)

[16] Haimes, Y.Y., Infrastructure interdependencies and homeland security. Journal of Infrastructure Systems, ASCE , Editorial, 11(2), pp. 65–66, 2005.

[17] Haimes, Y.Y. & Horowitz, B.M., Modelling interdependent infrastructures for sustainable counterterrorism. Journal of Infrastructure Systems, ASCE, Forum, 10(2), pp. 33–42, 2004.

[18] Haimes, Y.Y. & Jiang, P., Leontief-based model of risk in complex interconnected infrastructures. Journal of Infrastructure Systems, ASCE , 7(1), pp. 1–12, 2001. doi:10.1061/(ASCE)1076-0342(2001)7:1(1)

[19] Osorio, L.D., Craig, J.I., Goodno, B.J. & Bostrom, A., Interdependent response of networked systems. Journal of Infrastructure Systems, ASCE, 13(3), pp. 185–194, 2007. doi:10.1061/(ASCE)1076-0342(2007)13:3(185)

[20] Greenberg, H.J., Mathematical programming glossary. Informs Computing Society, 2008.

[21] Mulvey, M.M., Vanderbei, R.J. & Zenios, S.A., Robust optimization of large-scale systems. Operations Research, 43(2), pp. 264–281, 1995. doi:10.1287/opre.43.2.264

[22] Snyder, L.V., Facility location under uncertainty: a review. IIE Transactions, 38(7), pp. 547–564, 2006. doi:10.1080/07408170500216480

[23] Samsatli, N.J., Papageorgiou, L.G. & Shah, N., Robustness metrics for dynamic optimization models under parameter uncertainty. Process Systems Engineering AIChE Journal, 44(9), pp. 1993–2006, 1998.

[24] Suh, M. & Lee, T.Y., Robust optimization method for the economic term in chemical process design and planning. American Chemical Society, 40(25), pp. 5950–5959, 2001.

[25] Afonso, P.M. & Cunha, M.C., Robust optimal design of activated sludge bioreactors. Journal of Environmental Engineering, ASCE, 133(1), pp. 44–52, 2007. doi:10.1061/(ASCE)0733-9372(2007)133:1(44)

[26] Babayan, A.V., Savic, D.A., Walters, G.A. & Kapelan Z.S., Robust least-cost design of water distribution networks using redundancy and integration-based methodologies. Journal of Water Resources Planning and Management, ASCE, 133(1), pp. 67–77, 2007.

[27] Cunha, M.C. & Sousa, J., Dimensionamento Robusto de Sistemas de Abastecimento de Distribuio de água. VIII Seminário Ibero-Americano, 2008 (in Portuguese).

[28] Jeong, H.S., Qiao, J., Abraham, D.M., Lawley, M., Richard, J.P. & Yih, Y., Minimizing the consequences of intentional attack on water infrastructure. Computer Aided Civil and Infrastructure Engineering, 21(2), pp. 79–92, 2006. doi:10.1111/j.1467-8667.2005.00419.x

[29] Carr, R.D., Greenberg, H.J., Hart, W.E., Lauer, G.K.E., Lin, H., Morrison, T. & Phil ips, C.A., Robust optimization of contaminant sensor placement for community water systems. Mathematical Programming: Series A and B, 107(1), pp. 337–356, 2005.