OPEN ACCESS
In this paper, we have evaluated high-resolution spatial gridded climate data from two long-term global datasets, WorldClim V.2.0 and Chelsa V.1.2, in representing variables like precipitation and temperature for the urabá region of Colombia. additionally, climate variables from these datasets have been used to estimate evapotranspiration using traditional methods such as the Turc, hargreaves and Thornthwaite equations. finally, the results of long-term spatial climate characterization are used to apply the water balance equation in the surface at the watershed scale, to obtain the long-term average streamflow of the main streams of the urabá region; these streamflows are compared with the observations of hydrological stations. We find that the WorldClim and Chelsa rainfall estimates show average differences between 20% and 23% compared to the average annual rainfall in the area from in situ measurements. both datasets are able to reproduce the rainfall average annual cycle, although Chelsa shows a slightly better performance. regarding near surface air temperature we find that WorldClim shows a good performance, while Chelsa significantly underestimates the average temperature. finally, we found that the hargreaves and Thornthwaite methods lead to the best performance in estimating streamflow from the water balance, prob- ably because details of the seasonal behavior of variables like temperature and radiation are explicitly included in these methods. On the other hand, the Turc method yields larger estimates of evapotranspiration and therefore the corresponding derived streamflows are lower than those observed. The good performance of the WorldClim and Chelsa datasets in representing variables like precipitation, temperature, and the derived watershed-scale streamflow, suggest that these long-term global climate datasets can be used to study the spatial distribution of important hydrological variables in the urabá region of Colombia, and consequently the estimation of average streamflows through the method of the long-term water balance.
Chelsa 1.2, long-term water balance, performance, streamflow, WorldClim V.2.0.
[1] Shuttleworth, W.J., Terrestrial Hydrometeorology, John Wiley and Sons, 2012. https:// doi.org/10.1002/9781119951933
[2] Caicedo Carrascal, F.M., Asimilación de precipitación estimada por imágenes de satélite en modelos hidrológicos aglutinados y distribuidos, caso de estudio afluencias al Embalse de Betania (Huila, Colombia), Pontificia Universidad Javeriana, 2008.
[3] Park, N., Kyriakidis, P.C. & Hong, S., Geostatistical integration of coarse resolution satellite precipitation products and rain gauge data to map precipitation at fine spatial resolutions. Remote Sensing, 9(3), p. 255, 2017.
[4] Fick, S.E. & Hijmans, R.J., WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology [Internet], 37(12), pp. 4302–4315, May 15, 2017, available from https://doi.org/10.1002/joc.5086, 2017.
[5] Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W. & Kessler, M., Climatologies at high resolution for the earth’s land surface areas. Scientific Data [Internet], 4, pp. 1–20, 2017, available from: http://dx.doi.org/10.1038/sdata.2017.122
[6] van Soesbergen, A. & Mulligan, M., Uncertainty in data for hydrological ecosystem services modelling: Potential implications for estimating services and beneficiaries for the CAZ Madagascar. Ecosystem Services [Internet], 33, pp. 175–186. To be published, available from: https://doi.org/10.1016/j.ecoser.2018.08.005
[7] Malekian, A. & Ghasemi, E., Assessing the Applicability of CHELSA data for Monthly Precipitation. Presented at Terrestrial System Research: Monitoring, Prediction and High Performance Computing, Bonn, Germany, 2018.
[8] Gobernación de Antioquia. & Fundación EPM. Antioquia un territorio para proteger: estado del recurso hídrico en Antioquia, Medellín, 2018.
[9] DAAC, A., PALSAR_Radiometric_Terrain_Corrected_high_res, Includes Material © JAXA/METI 2007. Dataset Online: https://vertex.daac.asf.alaska.edu/, 2015 (accessed through ASF DAAC 11 November 2015). https://doi.org/10.5067/Z97HFCNKR6VA
[10] Álvarez, O., Cuantificación de la incertidumbre en la estimación de Campos Hidrológicos. Aplicación al Balance Hídrico de Largo Plazo. Universidad Nacional de Colombia; 2007.
[11] Amaya, G., Tamayo, C.R., Vélez, M.V., Vélez, J.I. & Álvarez, O.D., Modeling the hydrological behavior of three catchments in the Uraba Region – Colombia. Avances en Recursos Hidráulicos, 19, pp. 21–38, 2009.
[12] Nerini, D., Zulkafli, Z., Wang, L.P., Onof, C., Buytaert, W., Lavado-Casimiro, W. & Guyot, J.L., A comparative analysis of TRMM – rain gauge data merging techniques at the daily time scale for distributed rainfall – runoff modeling applications. Journal of Hydrometeorology, 16(5), pp. 2153–68, 2015.
[13] Budyko, M.I., Climate and Life, Academic Press: New York, NY, 1974.
[14] Barco, O.J. & Cuartas, A., Estimación de la Evaporación en Colombia. Universidad Nacional de Colombia sede Medellín, 1998.
[15] Turc, L., Water requirements assessment of irrigation, potential evapotranspiration: Simplified and updated climatic formula. Annales Agronomiques, 12, pp. 13–49, 1961.
[16] Thornthwaite, C.W., An approach toward a rationalclassification of climate. Geographical Review 38, pp. 55–94, 1948.
[17] Hargreaves, G.L. & Samani, Z.A., Estimating potential evapotranspiration. Tech. Note. Journal of the irrigation and Drainage Division 108(3), pp. 225–230, 1985.
[18] Poveda, G., Mesa, O., Vélez, J., Mantilla, R., Ramírez, J.M., Hernández, O. & Borja, A.U., HidroSIG: An interactive digital atlas of Colombia’s hydro-climatology. Journal of Hydroinformatics 9, pp. 145–56, 2006.