THE ENVIRONMENTAL ADDED VALUE OF WATER: A PROPOSAL

THE ENVIRONMENTAL ADDED VALUE OF WATER: A PROPOSAL

ALFONSO G. BANDERAS TARABAY REBECA GONZÁLEZ-VILLELA 

Mexican Institute of Water Technology (IMTA), Mexico

Page: 
406-417
|
DOI: 
https://doi.org/10.2495/SDP-V13-N3-406-417
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

This work develops a proposal to assign an added value to the water used by man in various productive processes. The cost of energy needed to evaporate a cubic meter under natural conditions is multiplied by the lowest local price per kWh to calculate an ‘intrinsic value’ of water (IVW). The resulting amount constitutes the monetary unit that is applied to calculate an added value on an entirely environmental basis, regardless of the law of supply and demand and the subjectivity prevailing in the market. Then, it is necessary to calculate the volume required to return to the used water the quantity and quality it had before the production process, or the dilution volume necessary for the wastewater to comply with the corresponding ecological standard for a particular pollutant (indicator). This amount is called the ‘restitution volume’ (RV), and the product (IVW x RV) constitutes the proposed environmental added value (WEAV). A table showing the evaluation of RV for a set of production processes is included. Several examples are developed to calculate the price of water in this context, including the human right to water and nature conservation, for which it is necessary to include some local costs of the regular water service, such as the federal and municipal costs of construction, operation, maintenance, and administration (COMA) of infrastructure: Water price = IVW + federal COMA + municipal COMA + WEAV, in which IVW represents a payment for the environmental services of the water within the hydrological cycle, such as the support of animal and plant production in the biosphere, climate regula- tion and shielding against UV rays. A brief discussion on the advantage of this methodology to ensure environmental and human rights to water is included.

Keywords: 

cost, ecological added value, price, uses, water evaporation heat.

  References

[1]    Wright, R.T. & Nebel, B.J., Environmental science: toward a sustainable future. 10th Ed. Pearson/Prentice Hall, 2008.

[2]    Stern, N., The economics of climate change: the stern review, Cambridge University Press: UK, 2008.

[3]    Niklas, Karl J. & Spatz, H-C., Plant physics. The University of Chicago Press; USA, 2012.

[4]    Banderas, A. & González-Villela, R., The intrinsic value of water: A proposal. WIT Trans- actions on Ecology and The Environment, 200, pp. 137–145, 2015. https://doi.org/10.2495/WS150121

[5]    European Environment Agency. Environment in the European Union at the turn of  the century. Office for Official Publications of the European Communities, Elsevier Science Ltd, Luxemburg, 2001 (Spanish version).

[6]    Barlow, M. & Clark, T., Blue gold: the fight to stop corporate theft of the world’s water. The New Press, 2002 (Spanish version).

[7]    Transnational Institute (https://www.tni.org/en/publication/here-to-staywa ter-remunic- ipalisation-as-a-global-trend). Consulted 18/01/2017.

[8]    Freshwater Organization, available at: http://freshwater.org/wp-content/uploads/ joom- la/ PDFs/critical-water/valueofwater.pdf. (accessed 18 January 2017).

[9]    Anton, D.J., Thirsty cities: urban environment and water supply in Latin America. International Development Research Center, Ottawa: Canada, 1993.

[10]    Solís, L., La Escasez, el Costo y el Precio del Agua en México. El Colegio de México: Mexico, 2005.

[11]    Anthes, R.A., Tropical cyclones: their evolution structure and effects. Meteorological Monographs, 19(41), 1982.

[12]    Prieto, R., Ramírez, R., Cortés, V. E. & Maya, M.E., Impacto del cambio climático en la temporada de lluvias en México. In P. F. Martínez-Austria & C. Patiño–Gomez (Eds.), Atlas de vulnerabilidad hídrica en México ante el cambio climático. Semarnat-IMTA, Cap. 3, pp. 65–80. 2010.

[13]    Vallentyne, J.R., Freshwater supplies and pollution: Effects of the demophoric explo- sion on water and man. In N. Polunin (ed.), The environmental future. Macmillan Press Ltd, London: UK, pp. 181–211, 1972.

[14]    National Water Comission (CONAGUA). Sistema Nacional de Información del Agua (SINA) - Estadísticas del Agua en México 2011, México (http://www.cna.gob.mx/ Contenido.aspx?n1=3&n2=60&n3=87&n4=30). (accessed 15 April 2016).

[15]    Real Academia de la Lengua Española, Diccionario de la Lengua Española. 22ª Edición, Tomo II. Madrid: Esp. 2002.

[16]    Raucher, R., The value of water: What it means, Why it’s important, and How water utility managers can use it. Journal AWWA, 97(4), pp. 90–98, 2005.

[17]    Available at: http://www.greenpeace.org/espana/Global/espana/report/cambio_climati- co/Fracking-GP_ESP.pdf

[18]    Webster´s Third New International Dictionary. Merriam Webster Inc. USA. V: II. 1986.

[19]    Richter, B.D., Warner, A.T., Meñyer, J.L. & Lutz, K., A collaborative and adaptive process for developing environmental flow recommendations. River Research and Applications, 22, pp. 297–318, 2006. https://doi.org/10.1002/rra.892

[20]    Straskraba, M., Tundisi, J. & Duncan, A., Comparative reservoir limnology and water quality management, Kluwer Academic Publishers, Dordrecht: The Netherlands, 1992.

[21]    American Public Health Association (APHA), Standard methods for the examination of water and wastewater, APHA, AWWA, WEF, Washington DC, 2012.

[22]    Ostrander, G.K., Tecniques in aquatic toxicology, CRC Press, Inc. USA, 1996.

[23]    Wheaton, F.W., Aquacultural engineering. Wiley, USA. 1977. First Spanish Edition AGT Ed. D.F. México, pp. 704, 1982.

[24]    FAO, Organic Agriculture, Committee on Agriculture, Fifteenth Session, Item 8 of the Provisional Agenda. Rome, Red Room. January 25–29, 1999. Available at: http://www. fao.org/docrep/meeting/X0075e.htm. (accessed 02 January 2017).

[25]    Carretto, B., A 2 años del derrame contaminante en el Río Sonora, una ‘mancha’ que no se borra, available at:http://expansion.mx/?internal_source=MEGAMENU_SECTION

[26]    Coloma López, P., Sánchez Navarro, J.A. & Martínez Gíl, F.J., Sistemas de flujo subter- ráneo regional en el acuífero carbonatado mesozoico de la Sierra de Cameros. Sector oriental. Estudios Geológicos, 53, pp. 159–172, 1997. https://doi.org/10.3989/egeol.97533-4240

[27]    Kresic, N., Hydrogeology and groundwater modeling. CRC Press, FL USA. 807 pp. 2007.

[28]    Gleick, P.H., Basic water requirements for human activities: Meeting basic needs. Wa- ter International, 21, pp. 83–92, 1996. https://doi.org/10.1080/02508069608686494

[29]    SEMARNAT-IMTA, Precio del Agua: Subsector agua potable, alcantarillado y sa- neamiento, Proyecto DP-1330.1. Instituto Mexicano de Tecnología del Agua, Mexico. 36 pp, 2013.

[30]    INEGI. Available at: http://www.inegi.org.mx/sistemas/bie/cuadrosestadisticos/Genera Cuadro.aspx?s=est&nc=583&c=29478.

[31]    SAGARPA, 3er Informe de Labores 2014–2015. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. México. 148 pp. 2015.

[32]    El Financiero. Available at: http://www.elfinanciero.com.mx/economia/un-gigante-ex- po rtador-de-alimentos.html. (Accessed 30 January, 2017).

[33]    Shah, T., Groundwater and human development: challenges and opportunities in liveli- hoods and environment. Water Science and Technology, 51(8), pp. 27–37, 2005.

[34]    Díaz-Padilla, G., Sánchez-Cohen, I., Guajardo-Panes, R.A., Del Ángel-Pérez, A.L., Ruíz-Corral, A., Medina-García, G. & Ibarra-Castillo D., Mapping of the aridity index and its population distribution in Mexico. Revista Chapingo Serie Ciencias Forestales y del Ambiente, V. XVII, Ed. Esp.: 267–275, 2011.

[35]    IT (International Transparency). Available at: http://www.transparency.org/news/ feature/corruption_perceptions_index_2016?gclid=CPj5l_WE9dECFQ8taQodOaQKd

[36]    IMCO (Instituto Mexicano para la Competitividad). Available at: http://imco.org.mx/ politica_buen_gobierno/mexico-anatomia-de-la-corrupcion/

[37]    Hoekstra, A.Y., Methodological advancements in the footprint analysis. Ecological Economics, 68, pp. 1963–1974, 2009. https://doi.org/10.1016/j.ecolecon.2008.06.021