A GIS Spatial Analysis Model for Landslide Hazard Mapping Application in Alpine Area

A GIS Spatial Analysis Model for Landslide Hazard Mapping Application in Alpine Area

C. AUDISIO G. NIGRELLI A. PASCULLI N. SCIARRA L. TURCONI 

PhD at University of Chieti-Pescara, Department of Engineering and Geology, Via dei Vestini, Chieti (Italy)

CNR IRPI Torino, Strada delle Cacce 73, Torino (Italy)

University of Chieti-Pescara, Department of Engineering and Geology, Via dei Vestini, Chieti (Italy)

Page: 
883-893
|
DOI: 
https://doi.org/10.2495/SDP-V12-N5-883-893
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

This research describes an application of an existing method for evaluating landslide susceptibility in alpine contest that may be considered a useful support in better land-use planning and risk management. In order to perform the method and improve it creating landslide maps of probability, we investigated the several conditioning factors that in general affected these morphological processes. Firstly, a land-slide inventory was prepared using both in-depth analysis of historical records and aero-photos (or orthophotos) investigation. Secondarily, a set of conditioning factors which may affect slope movement and failure (particularly lithology, geomorphology, land use, slope angle and aspect) was considered. Then, the method involved the application of GIS techniques, specifically, spatial Data Analysis appli-cation. The thematic maps of conditioning factors overlapping together with the support of the raster calculator allowed the susceptibility map creation. The method was applied to the Germanasca Valley, a small basin in the Italian Western Alps. This easy to use method allows one to individuate various classes of susceptibility and to identify slope, lithology and geomorphology, driven by old landslide events as the main conditioning factors. Furthermore, the individuation of area susceptible to landslides verification is strictly related to risk and, as a consequence, this method permits specific zone to be selected for detailed engineering geology studies in land-use planning.

Keywords: 

GIS, landslides, susceptibility zonation, western alps, Italy.

  References

[1] Cruden, D.M. & Varnes, D.J., Landslides types and processes. In Landslides Investi-gation and Mitigation, Special Report 247, Transportation Research Board National Research Country, eds. A.K. Turner & R.L. Schuster, National Academy Press: Wash-ington, DC, pp. 36–75, 1996.

[2] Esposito, L., Esposito, A.W., Pasculli, A. & Sciarra, N., Particular features of the physi-cal and mechanical characteristics of certain Phlegraean pyroclastic soils. Catena, 104, pp. 186–194, 2013. http://dx.doi.org/10.1016/j.catena.2012.11.009

[3] Spieker, E.C. & Gori, P.L., National landslide hazard mitigation strategy: a framework for loss reduction. USGS Open File Report 00–450, 49, 2000.

[4] Brabb, E.E., Innovative approaches to landslide hazard and risk mapping. Proceedings 4th ISL, Toronto Canada, pp. 307–324, 1984.

[5] Calista, M., Miccadei, E., Pasculli, A., Piacentini, T., Sciarra, M. & Sciarra, N., Geo-morphological features of the Montebello sul Sangro large landslide (Abruzzo, Central Italy). Journal of Maps, 12, pp. 1–10, 2015. http://dx.doi.org/10.1080/17445647.2015.1095134

[6] Clerici, A., Perego, S., Tellini, C. & Vescovi, P., A procedure for landslide susceptibility zonation by the conditional analysis method. Geomorphology, 48, pp. 349–364, 2002. http://dx.doi.org/10.1016/S0169-555X(02)00079-X

[7] Van Westen, C.J., Rengens, N. & Soeters, R., Use of geomorphological information in indirect landslide susceptibility assessment. Natural Hazards, 30, pp. 399–419, 2003. http://dx.doi.org/10.1023/B:NHAZ.0000007097.42735.9e

[8] Yalcin, A. & Bulut, F., Landslide susceptibility mapping using GIS and digital photo-grammetric techniques: a case study from Ardesen (NE-Turkey). Natural Hazards, 41, pp. 201−226, 2007. http://dx.doi.org/10.1007/s11069-006-9030-0

[9] Nigrelli, G., Studio delle condizioni pluviometriche del bacino idrografico del Torrente Germanasca. GEAM, 111, pp. 49–56, 2004.

[10] Regione Piemonte, Distribuzione regionale di piogge e temperature. Collana studi cli-matologici in Piemonte, Vol 1, Direzione dei Servizi Tecnici di Prevenzione, Settore Meteoidrografico e Reti di Monitoraggio - Università degli Studi di Torino, Dipartimen-to di Scienze della Terra, 1998.

[11] Nigrelli, G., Analysis and characteristics of pluviometric events in the Germanasca Val-ley (Italian Western Alps). Geografia Fisica e Dinamica Quaternaria, 28, pp. 147–158, 2005.

[12] Audisio, C., Nigrelli, G. & Lollino, G., A GIS tool for historical instability processes data entry: an approach to hazard management in two Italian Alpine river basins. Compu-ters and Geosciences, 35(8), pp. 1735–1747, 2009; doi: 10.1016/j.cageo.2009.01.012. http://dx.doi.org/10.1016/j.cageo.2009.01.012

[13] ARPA Piemonte, Progetto IFFI: Web-site Visited on March 20 at http://www.arpa. piemonte.it, 2008.

[14] Borghi, A., Cadoppi, P., Porro, A., Sacchi, R. & Sandrone, R., Osservazioni geologiche nella Val Germanasca e nella media Val Chisone (Alpi Cozie). Bollettino del Museo Regionale di Scienze Naturali, 2(2), pp. 504–529, 1984.

[15] Comunità Montana Valli Chisone e Germanasca, Piano di Bacino dei Torrenti Chisone e Germanasca, Unpublished report, p. 126, 2002.

[16] Regione Piemonte, Banca dati geologica. Settore prevenzione del rischio geologico, meteorologico e sismico Italian Government Report, 1990.

[17] Turconi, L., Nigrelli, G. & Conte, R., Historical datum as a basis for a new GIS appli-cation to support civil protection services in NW Italy. Computers & Geosciences, 66, pp. 13–19, 2014; doi: 10.1016/j.cageo.2013.12.008. http://dx.doi.org/10.1016/j.cageo.2013.12.008

[18] Pasculli, A. & Sciarra, N., A Probabilistic approach to determine the local erosion of a watery debris flow. 11th International Congress for Mathematical Geology: ­Quantitative Geology from Multiple Sources, IAMG, Liege; Belgium, 2006; ISBN: 978-296006440-7; Scopus: 2-s2.0-84902449614.

[19] Minatti, L. & Pasculli, A., Dam break smoothed particle hydrodynamic modeling based on Riemann solvers. 8th International Conference on Advances in Fluid Mechanics, AFM 2010; Algarve; Portugal, 69, pp. 145–156, 2010; ISBN; 9781845644765. http://dx.doi.org/10.2495/AFM100131

[20] Minatti, L. & Pasculli, A., SPH numerical approach in modelling 2d muddy debris flow. 5th International Conference on Debris-Flow Hazards Mitigation Mechanics, Prediction and Assesment, pp. 467–475, 2011, ISBN: 9788895814469; doi: 10.4408/ IJEGE.2011-03.B-052.

[21] Pasculli, A., Minatti, L., Sciarra, N. & Paris, E., SPH modeling of fast muddy debris flow: numerical and experimental comparison of certain commonly utilized approaches. Italian Journal of Geosciences, 132(3), pp. 350–365, 2013, doi: 10.3301/IJG.2013.01; Scopus: 2-s2.0-84886468697.

[22] Pasculli, A., Minatti, L., Audisio, C. & Sciarra, N., Insights on the application of some current SPH approaches for the study of muddy debris flow: numerical and experi-mental comparison. 10th International Conference on Advances in Fluid Mechanics, AFM 2014, WIT Transactions on Engineering Sciences, 82, pp. 3–15, 2014; ISBN: 9781845647902; doi: 10.2495/AFM140011; Scopus: 2-s2.0-8490761123.