Investigation of maximum Nusselt number with inclined and non-confined offset jet impingement cooling

Investigation of maximum Nusselt number with inclined and non-confined offset jet impingement cooling

Sunil B. IngoleKalyan K. Sundaram 

D. Y. Patil College of Engineering and Innovation, Pune 410506, India

IFM, Pune 410506, India

Corresponding Author Email: 
sbingole1@rediffmail.com
Page: 
869-876
|
DOI: 
https://doi.org/10.18280/ijht.360513
Received: 
28 September 2017
| |
Accepted: 
19 July 2018
| | Citation

OPEN ACCESS

Abstract: 

Inclined jet impingement is used for various industrial cooling applications. Its manufacturing and ease of applications is making it more popular day by day. The hot flat target surface is cooled using jet impingement. The jet is kept at an inclination of 15 –75° to hot target plate. The experiments are performed to study cooling effect with different configurations of inclined jets. Inclined jet with air as fluid having Reynolds number in the range of 2,000 ⩽ Re ⩽ 20,000 is examined for the circular cross section of jet. The target surface to jet perpendicular height (H) is taken as 0.5 ⩽ H/D ⩽ 6.8. The maximum cooled spots on the target surface are identified on the plate by analyzing maximum Nusselt numbers at different locations.  The effect of H and (H/D) on maximum Nusselt number is presented. The investigation leads to equations for maximum Nusselt number for inclined circular non-confined air jet in terms of Reynolds number. Also analysis is carried out for ratio of average Nusselt number to maximum Nusselt number.

Keywords: 

convective cooling, maximum nusselt number, inclined jet, nonconfined jet, offset jet

1. Introduction
2. Literature Survey On Inclined Jet
3. Proposed Experimentation
4. Maximum Nusselt Number: Analysis, Results and Discussion
5. Conclusions
Nomenclature
  References

[1]    Anandan SS, Ramlingam V. (2008). Thermal management of electronics: A review of literature. Thermal Science 12(2): 5-26. http://dx.doi.org/10.2298/TSCI0802005A

[2]    Ingole SB, Sundaram KK. (2012). Review of experimental investigation in heat transfer for jet impingement cooling. International Review of Mechanical Engineering 6(3): 346-356.

[3]    Ingole SB. (2017). Heat transfer analysis for multiple jet cooling of high temperature electronics target. International Conference on Intelligent Computing and Control Systems, Madurai. http://dx.doi.org/10.1109/ICCONS.2017.8250713

[4]    Sriromreun P, Sriromreun P. (2018). Experimental and numerical studies of heat transfer characteristics for impinging jet on dimple surfaces. Chemical Engineering Transactions 70: 1273-1278. http://dx.doi.org/10.3303/CET1870213 

[5]    Tong AY. (2003). On the impingement heat transfer of an oblique free surface plane jet. International Journal of Heat and Mass Transfer 46: 2077-2085. http://dx.doi.org/10.1016/S0017-9310(96)00310-9

[6]    Ali A, Mubarak AL, Syed M, Shaahid Luai M, Hadhrami AL. (2013). Heat transfer in a channel with inclined target surface cooled by single array of centered impinging jet. Thermal Science 17(4): 1195-1206. http://dx.doi.org/10.2298/TSCI110630010A

[7]    Cavadas AS, Pinho FT, Campos JBLM. (2012). Laminar flow field in a viscous liquid impinging jet confined by inclined plane walls. International Journal of Thermal Sciences 59: 95-110. http://dx.doi.org/10.1016/j.ijthermalsci.2012.04.004

[8]    Hakan F, Varol OY, Koca A, Firat M, Turan B, Metin I. (2011). Experimental investigation of cooling of heated circular disc using inclined circular Jet. International Communications in Heat and Mass Transfer 38: 990-1001. http://dx.doi.org/10.1016/j.icheatmasstransfer.2011.04.013

[9]    Decker K, Rodrigo, Buss, Lizoel, Wiggers R, Vinicyus, Noriler, Dirceu, Reinehr L, Edelberto, Meier F, Henry, Martignoni, Waldir, Mori, Milton. (2011). Numerical validation of a coaxial and confined jet flow. Chemical Engineering Transactions 24: 1459-1464. https://doi.org/10.3303/CET1124244

[10]    Eren H, Celik N. (2006). Cooling of a heated flat plate by an obliquely impinging slot jet. International Communications in Heat and Mass Transfer 33: 372-380. http://dx.doi.org/10.1016/j.icheatmasstransfer.2005.10.009

[11]    Song J, Lee JW, Yu MS, Shin SW, Kim BS, Cho HH. (2013). Thermal characteristics of inclined plate impinged by underexpanded sonic jet. Int. Journal of Heat and Mass Transfer 62: 223-229. https://doi.org/10.1016/j.ijheatmasstransfer.2013.02.066

[12]    Choo K, Kang TY, Kim SJ. (2012). The effect of inclination on impinging jets at small nozzle-to-plate spacing. Int. Journal of Heat and Mass Transfer 55: 3327-3334. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.02.062

[13]    Ma CF, Zheng Q, Wu K. (1997). Local characteristics of impingement heat transfer with oblique round free surface jets of large Prandtl number liquid. Pergamon - International Journal of Heat and Mass Transfer 40(10): 2249-2259. http://dx.doi.org/10.1016/S0017-9310(96)00310-9

[14]    Kito M. (2012). Effect of inclination of impinging jets on flow and heat transfer characteristics. International Journal of Science and Engineering Investigations 1(9): 42-47.

[15]    Nakabe K, Fornalik E, Jens F, Eschenbacher Yamamoto Y, Ohta T, Suzuki K. (2001). Interactions of longitudinal vortices generated by twin inclined jets and enhancement of impingement heat transfer. International Journal of Heat and Fluid Flow 22: 287-292. http://dx.doi.org/10.1016/S0142-727X(01)00090-X

[16]    Yoon SH, Kim MK, Lee DH. (1997). Turbulent flow and heat transfer characteristics of a two-dimensional oblique plate impinging jet. KSME International Journal 11(4): 476-483. http://dx.doi.org/10.1007/BF02945086

[17]    Chiriac VA, Rosales JL. (2004). The cooling impact of a pair of confined angled air jets impinging on a printed circuit board. In IEEE Inter Society Conference. http://dx.doi.org/10.1109/ITHERM.2004.1319236

[18]    Yang YT, Wang YX. (2005). Three-dimensional numerical simulation of an inclined jet with cross-flow. Int. Journal of Heat and Mass Transfer 48: 4019-4027. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2005.04.018

[19]    Ramezanpour A, Shirvani H, Mirzaee I. (2003). A numerical study on the heat transfer characteristics of two-dimensional inclined impinging jet. In Electronics Packaging Technology Conference. http://dx.doi.org/10.1109/EPTC.2003.1271594

[20]    Bartoli C. (2011). Free convection enhancement between inclined wall and air in presence of expired jets at temperature difference of 40 K. Experimental Thermal and Fluid Science 35: 283-290. http://dx.doi.org/10.1016/j.expthermflusci.2010.09.010

[21]    Benmouhoub D, Mataoui A. (2014). Inclined plane jet impinging a moving heated wall. Fluid Dynamics and Materials Processings 10(2): 241-260. 

[22]    Attallaa M, Hussein M, Spechtb ME. (2017). Effect of inclination angle of a pair of air jets on heat transfer into the flat surface. Experimental Thermal and Fluid Science 85: