A comparison between different materials with mechanocaloric effect

A comparison between different materials with mechanocaloric effect

Ciro Aprea Adriana Greco Angelo Maiorino Claudia Masselli 

University of Salerno, Via Giovanni Paolo II 132, Fisciano (SA) 84084, Italy

University of Naples “Federico II”, P. le Tecchio 80, Naples 80125, Italy

Corresponding Author Email: 
cmasselli@unisa.it
Page: 
801-807
|
DOI: 
https://doi.org/10.18280/ijht.360304
Received: 
1 June 2018
| |
Accepted: 
8 August 2018
| | Citation

OPEN ACCESS

Abstract: 

Caloric refrigeration can be a viable alternative to the traditional vapour compression technology since a caloric solid refrigerant has zero vapour pressure and therefore is ecological with no direct Ozone Depletion Potential and zero direct Global Warming Potential. Caloric refrigeration embraces four main cooling techniques, each one based on a different caloric effect. This paper is focused upon materials that display mechanocaloric properties, with a transition induced through the application of variable pressure (barocaloric cooling) or uniaxial stress (elastocaloric cooling). Materials that display solid-state caloric effects driven by applied pressure/stress could lead to more accessible and economic technological solutions. By means of a two-dimensional mathematical model an energy analysis is performed with the most performing elastocaloric and barocaloric materials to explore the potential of mechanocaloric cooling. Temperature span, cooling power and coefficient of performance have bene evaluated. Results demonstrate best mechanocaloric materials, like Cu68.13Zn15.74Al16.14 and (NH4)2MoO2F4, provide energy performances better than those of traditional vapour compression plants.

Keywords: 

caloric cooling, mechanocaloric, elastocaloric, barocaloric, caloric effect, caloric materials

1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Nomenclature
  References

[1] Aprea C, Greco A, Maiorino A, Masselli C. (2018). The drop-in of HFC134a with HFO1234ze in a household refrigerator. International Journal of Thermal Sciences 127: 117-125. https://doi.org/10.1016/j.ijthermalsci.2018.01.026

[2] Aprea C, Greco A, Maiorino A, Masselli C, Metallo A. (2016). HFO1234yf as a drop-in replacement for R134a in domestic refrigerators: a life cycle climate performance analysis. International Journal of Heat and Technology 34: S212-S218. https://doi.org/10.18280/ijht.34S204

[3] Aprea C, Greco A, Maiorino A, Masselli C, Metallo A. (2016). HFO1234ze as drop-in replacement for R134a in domestic refrigerators: An environmental impact analysis. Energy Procedia 101: 964–971. https://doi.org/10.1016/j.egypro.2016.11.122

[4] Scafetta N, Mirandola A, Bianchini A. (2017). Natural climate variability, part 1: Observations versus the modeled predictions. International Journal of Heat and Technology 35: S9-S17. https://doi.org/10.18280/ijht.35Sp0102

[5] Poolsawat K, Wongsapai W. (2018). Effects of household-related factors on residential direct CO2 emissions in Thailand from 1993 to 2015: A decomposition analysis. Chemical Engineering Transactions 63: 337-342. https://doi.org/10.3303/CET1863057

[6] Polonara F, Kuijpers L, Peixoto R. (2017). Potential impacts of the Montreal Protocol Kigali Amendment to the choice of refrigerant alternatives. International Journal of Heat and Technology 35: S1-S8. https://doi.org/10.18280/ijht.35Sp0101

[7] Aprea C, Greco A. (1998). An experimental evaluation of the greenhouse effect in R22 substitution. Energy Conversion and Management 39(9): 877-887. https://doi.org/10.1016/S0196-8904(97)10058-9

[8] Lassandro P, Di Turi S. (2017). Energy efficiency and resilience against increasing temperatures in summer: the use of PCM and cool materials in buildings. International Journal of Heat and Technology 35: S307-S315. https://doi.org/10.18280/ijht.35Sp0142 

[9] Sari EN, Prueksakorn K, Gonzalez JC, Arpornthip T, Areerob T, Pornsawang C, Pimonsree S. (2018). Inventory of greenhouse gas emissions for Phayao province-an agricultural city in Thailand. Chemical Engineering Transactions 63: 163-168. https://doi.org/10.3303/CET1863028

[10] Kitanovski A, Plaznik U, Tomc U, Poredoš A. (2015). Present and future caloric refrigeration and heat-pump technologies. Int. J. of Refrigeration 57: 288-298. https://doi.org/10.1016/j.ijrefrig.2015.06.008

[11] Planes A, Stern-Taulats E, Castán T, Vives E, Mañosa L, Saxena A. (2015) Caloric and multicaloric effects in shape memory alloys. Materials Today: Proceedings 2: S477-S484. https://doi.org/10.1016/j.matpr.2015.07.332

[12] Fähler S, Rößler U K, Kastner O, Eckert J, Eggeler G, Emmerich H, Entel P, Müller S, Quandt E, Albe K. (2012). Caloric effects in ferroic materials: new concepts for cooling. Adv. Eng. Mat. 14(1‐2): 10-19. https://doi.org/10.1002/adem.201100178

[13] Pecharsky VK, Gschneidner Jr. KA. (1999). Magnetocaloric effect and magnetic refrigeration. J. of Magn. and Magn. Mat. 200(1-3): 44-56. https://doi.org/10.1016/S0304-8853(99)00397-2

[14] Aprea C, Greco A, Maiorino A. (2015). GeoThermag: A geothermal magnetic refrigerator. Int. J. of Refrig. 59: 75-83. https://doi.org/10.1016/j.ijrefrig.2015.07.014

[15] Aprea C, Greco A, Maiorino A. (2017). An application of the artificial neural network to optimise the energy performances of a magnetic refrigerator. Int. J. of Refrigeration 82: 238-251. https://doi.org/10.1016/j.ijrefrig. 2017.06.015

[16] Ju YS. (2010). Solid-state refrigeration based on the electrocaloric effect for electronics cooling. J. of Electronic Packaging 132(4): 041004. https://doi.org/10.1115/1.4002896

[17] Tusek J, Engelbrecht K, Millán-Solsona R, Mañosa L, Vives E, Mikkelsen LP, Pryds N. (2015). The elastocaloric effect: a way to cool efficiently. Adv. En. Mat. 5(13). https://doi.org/10.1002/aenm.201500361

[18] Strässle T, Furrer A, Dönni A, Komatsubara T. (2002). Barocaloric effect: The use of pressure for magnetic cooling in Ce 3 Pd 20 Ge 6. Journal of Applied Physics 91(10): 8543-8545. https://doi.org/10.1063/1.1456450

[19] Rowe AM, Barclay JA. (2003). Ideal magnetocaloric effect for active magnetic regenerators. J. of Appl. Physics 93(3): 1672-1676. https://doi.org/10.1063/1.1536016

[20] Aprea C, Greco A, Maiorino A, Masselli C. (2015). A comparison between rare earth and transition metals working as magnetic materials in an AMR refrigerator in the room temperature range. Appl. Thermal Eng. 91: 767-777. https://doi.org/10.1016/j.applthermaleng.2015.08.083

[21] Sandeman KG. (2012). Magnetocaloric materials: The search for new systems. Scripta Materialia 67(6): 566-571. https://doi.org/10.1016/j.scriptamat.2012.02.045

[22] Phan MH, Yu SC. (2007). Review of the magnetocaloric effect in manganite materials. Journal of Magnetism and Magnetic Materials 308(2): 325-340. https://doi.org/10.1016/j.jmmm.2006.07.025

[23] Aprea C, Greco A, Maiorino A, Masselli C. (2017). A comparison between electrocaloric and magnetocaloric materials for solid state refrigeration. International Journal of Heat and Technology 35(1): 225-234. https://doi.org/10.18280/ijht.350130 

[24] Aprea C, Greco A, Maiorino A, Masselli C. (2016) A comparison between different materials in an active electrocaloric regenerative cycle with a 2D numerical model. Int. J. of Refrigeration 69: 369-382. https://doi.org/10.1016/j.ijrefrig.2016.06.016

[25] Lu SG, Zhang Q. (2009). Electrocaloric materials for solid‐state refrigeration. Advanced Materials 21(19): 1983-1987. https://doi.org/10.1002/adma.200802902

[26] Coey JMD. (2012). Permanent magnets: Plugging the gap. Scripta Materialia 67(6): 524-529. https://doi.org/10.1016/j.scriptamat.2012.04.036

[27] Aprea C, Greco A, Maiorino A, Mastrullo R, Tura A. (2014). Initial experimental results from a rotary permanent magnet magnetic refrigerator. Int. J. of Refrig. 43: 111-122. https://doi.org/10.1016/j.ijrefrig.2014.03.014

[28] Aprea C, Greco A, Maiorino A, Masselli C. (2016). The energy performances of a rotary permanent magnet magnetic refrigerator. Int. J. of Refrig. 61: 1-11. https://doi.org/10.1016/j.ijrefrig.2015.09.005

[29] Aprea C, Cardillo G, Greco A, Maiorino A, Masselli C. (2016). A rotary permanent magnet magnetic refrigerator based on AMR cycle. Appl. Thermal Eng. 101: 699-703. https://doi.org/10.1016/j.applthermaleng.2016.01.097

[30] Qian S, Geng Y, Wang Y, Ling J, Hwang Y, Radermacher R, Takeuchi I, Cui J. (2016). A review of elastocaloric cooling: materials, cycles and system integrations. International J of Refrigeration 64: 1-19. https://doi.org/10.1016/j.ijrefrig.2015.12.001

[31] Mañosa L, Planes A, Acet M. (2013). Advanced materials for solid-state refrigeration. J. of Materials Chemistry A 1(16): 4925-4936. https://doi.org/10.1039/b000000x

[32] Tusek J, Engelbrecht K, Millán-Solsona R, Mañosa L, Vives E, Mikkelsen LP, Pryds N. (2015). The elastocaloric effect: A way to cool efficiently. Adv. En. Mat. 5(13). https://doi.org/10.1002/aenm.201500361

[33] Strässle T, Furrer A, Dönni A, Komatsubara T. (2002). Barocaloric effect: The use of pressure for magnetic cooling in Ce 3 Pd 20 Ge 6. Journal of Applied Physics 91(10): 8543-8545. https://doi.org/10.1063/1.1456450

[34] Gorev MV, Bogdanov EV, Flerov IN, Kocharova AG, Laptash NM. (2010). Investigation of thermal expansion, phase diagrams, and barocaloric effect in the (NH4) 2 WO 2 F 4 and (NH 4) 2 Mo O 2 F 4 oxyfluorides. Physics of the Solid State 52(1): 167-175. https://doi.org/10.1134/S1063783410010294

[35]  Wu RR, Bao LF, Hu FX, Wu H, Huang QZ, Wang J, Dong XL, Li GN, Sun JR, Shen FR, Zhao TY, Zheng XQ, Wang LC, Liu Y, Zuo WL, Zhao YY, Zhang M, Wang XC, Jin CQ, Rao GH, Han XF, Shen BG. (2015). Giant barocaloric effect in hexagonal Ni 2 In-type Mn-Co-Ge-In compounds around room temperature. Scientific Reports 5. https://doi.org/18027. 10.1038/srep18027

[36] Usuda EO, Bom NM, Carvalho AMG. (2017). Large barocaloric effects at low pressures in natural rubber. European Polymer Journal 92: 287-293. https://doi.org/10.1016/j.eurpolymj.2017.05.017

[37] Aprea C, Greco A, Maiorino A. (2011). A numerical analysis of an active magnetic regenerative cascade system. Int. J. of Energy Research 35(3): 177-188. https://doi.org/10.1002/er.1682

[38] Aprea C, Greco A, Maiorino A. (2011). A numerical analysis of an active magnetic regenerative refrigerant system with a multi-layer regenerator. Energy Conversion and Management 52(1): 97-107. https://doi.org/10.1016/j.enconman.2010.06.048

[39] Aprea C, Greco A, Maiorino A. (2012). Modelling an active magnetic refrigeration system: a comparison with different models of incompressible flow through a packed bed. Applied Thermal Engineering 36: 296-306. 10.1016/j.applthermaleng.2011.10.034

[40] Aprea C, Greco A, Maiorino A. (2013). The use of the first and of the second order phase magnetic transition alloys for an AMR refrigerator at room temperature: a numerical analysis of the energy performances. Energy Conversion and Management 70: 40-55. https://doi.org/10.1016/j.enconman.2013.02.006

[41] Aprea C, Greco A, Maiorino A. (2013) A dimensionless numerical analysis for the optimization of an active magnetic regenerative refrigerant cycle. Int. J. of En. Research 37(12): 1475-1487. https://doi.org/10.1002/er.2955

[42] Aprea C, Greco A, Maiorino A, Masselli C. (2017). Analyzing the energetic performances of AMR regenerator working with different magnetocaloric materials: Investigations and viewpoints. International Journal of Heat and Technology 35(Special Issue 1): S383-S390. https://doi.org/10.18280/ijht.35Sp0152

[43] Aprea C, Greco A, Maiorino A, Masselli C. (2018). Energy performances and numerical investigation of solid-state magnetocaloric materials used as refrigerant in an active magnetic regenerator. Thermal Science and Engineering Progress 6: 370-379. https://doi.org/10.1016/j.tsep.2018.01.006

[44] Aprea C, Cardillo G, Greco A, Maiorino A, Masselli C. (2015). A comparison between experimental and 2D numerical results of a packed-bed active magnetic regenerator. Applied Thermal Engineering 90: 376-383. https://doi.org/10.1016/j.applthermaleng.2015.07.020

[45] Aprea C, Greco A, Maiorino A, Masselli C. (2018). Solid-state refrigeration: A comparison of the energy performances of caloric materials operating in an active caloric regenerator. Energy. https://doi.org/10.1016/j.energy.2018.09.114

[46] Eriksen D, Engelbrecht K, Bahl CRH, Bjørk R, Nielsen KK, Insinga AR, Pryds N. (2015). Design and experimental tests of a rotary active magnetic regenerator prototype. Int. J. of Refrig. 58: 14-21. https://doi.org/10.1016/j.ijrefrig.2015.05.004

[47] Trevizoli PV, Barbosa Jr J.R, Ferreira RT. (2011). Experimental evaluation of a Gd-based linear reciprocating active magnetic regenerator test apparatus. Int. J. of Refrig. 34(6): 1518-1526. https://doi.org/10.1016/j.ijrefrig.2011.05.005

[48] Plaznik U, Tušek J, Kitanovski A, Poredoš A. (2013). Numerical and experimental analyses of different magnetic thermodynamic cycles with an active magnetic regenerator. Applied Thermal Engineering