Measurement and correlation of excess molar enthalpies and vapor-liquid equilibria for alkanolamine-water system

Measurement and correlation of excess molar enthalpies and vapor-liquid equilibria for alkanolamine-water system

Ruilei Zhang

Institute of Disaster Prevention, School of ecology and environment, Langfang 101601, China

Corresponding Author Email: 
zhangrl420@163.com
Page: 
406-410
|
DOI: 
https://doi.org/10.18280/ijht.360204
Received: 
9 October 2017
| |
Accepted: 
27 February 2018
| | Citation

OPEN ACCESS

Abstract: 

The absorption of carbon dioxide by alkanolamine aqueous solution is directly related to its thermodynamic properties, thus the important thermodynamic properties of the system such as vapor-liquid equilibria and excess molar enthalpies must be first determined for the selection of new absorbents with high absorption rate and strong absorption capacity. However, these data on alkanolamine aqueous solution are rarely seen in the literature. Therefore, the present study measures the excess molar enthalpies of 1, 2-diethylaminoethanol and water at 298.15 K, 303.15 K and 323.15 K in the whole concentration range, using C-80 microcalorimetry, and vapor-liquid equilibria data of the system under the condition of 30-101 kPa using a vapor-liquid double circulation device, correlates the calculated excess molar enthalpies and vapor-liquid equilibria data using non-random two-fluid NRTL model, and finally provides the model parameters of the equation. The results show that the fitting results of the vapor-liquid equilibria and excess molar enthalpies are in good agreement with the experimental values, which further verifies that the model can be used for the absorption of carbon dioxide by alkanolamine aqueous solution.

Keywords: 

alkanolamines, vapor-liquid equilibria, NRTL equations, measurement and correlation

1. Introduction
2. Experimental Device and Method
3. Thermodynamic Model and Selection of Objective Function
4. Results and Analysis
5. Conclusions
Acknowledgement
  References

[1] Kittel J, Fleury E, Vuillemin B, Gonzalez S, Ropital F, Oltra R. (2015). Corrosion in alkanolamine used for acid gas removal: from natural gas processing to CO2 capture. Materials & Corrosion 63(3): 223-230. https://doi.org/10.1002/maco.201005847

[2] Fei W, Ai N, Chen J. (2005). Capture and separation of greenhouse gas CO2 - challenges and opportunities for separation technology. Chemical Industry and Engineering Progress 24(1): 1-8. https://doi.org/10.16085/j.issn.1000-6613.2005.01.002

[3] Rochelle GT. (2009). Amine scrubbing for CO2 capture. Science 325(5948): 1652-1654. https://doi.org/10.1126/science.1176731

[4] Chang HT, Posey M, Rochelle GT. (1993). Thermo-dynamics of alkanolamine - water solutions from freezing point measurements. Industrial & Engineering Chemistry Research 32(10): 2324-2335. https://doi.org/10.1021/ie00022a016

[5] Guan FW, Zhang F, Cao NL, Liu Q, Liu J, Yu SM, Guan HY. (2018). Thermal control design and experimental verification of light off-axis space optical remote sensor in the sun-synchronous orbit. International Journal of Heat and Technology 36(1): 125-132. https://doi.org/10.18280/ijht.360117

[6] Mathonat C, Maham Y, Mather AE, Hepler LG. (1997). Excess molar enthalpies of (water + monoalkanol- amine) mixtures at 298.15 K and 308.15 K. Journal of Chemical & Engineering Data 42: 993-995. https://doi.org/10.1021/je960304u

[7] Simond MR, Balleratbusserolles K, Coxam JY. (2014). Interactions of Alkanolamines with Water: Excess Enthalpies and Hydrogen Bonding. Journal of Chemical Theory & Computation 10(6): 2471-2478. https://doi.org/10.1021/ct5002158 

[8] Mundhwa M, Henni A. (2007). Molar excess enthalpy (HE) for various {alkanolamine (1) + water (2) systems at T= (298.15, 313.15, and 323.15) K. Journal of Chemical Thermodynamics 39(11): 1439-1451. https://doi.org/10.1016/j.jct.2007.03.010

[9] Wang SH, Luo BC, Zhen DX. (1992). Study on the relationship between the mixed heat and the vapor liquid equilibrium of the two - dimensional poly -ethylene glycol aqueous solution. Journal of Beijing University of Chemical Technology (Natural Science Edition) 19(3): 1-9. https://doi.org/10.13543/j.cnki.bhxbzr. 1992.03.001

[10] Schmidt KAG, Maham Y, Mather AE. (2007). Use of the NRTL equation for simultaneous correlation of vapour-liquid equilibria and excess enthalpy appli-cations to aqueous alkanolaminesystems. Journal of Thermal Analysis and Calorimetry 89(1): 61-72. https://doi.org/10.1007/s10973-006-8307-6

[11] Haan AD, Kai F, Haacke M. (1997). Vapor−liquid equilibria and enthalpies of mixing for binary mixtures of n-methylacetamide with aniline, decane, ethylene glycol, naphthalene, phenol, and water. Journal of Chemical & Engineering Data 42(5): 875-881. https://doi.org/10.1021/je970031i

[12] Renon H, Prausnitz JM. (1968). Local compositions in thermodynamic excess functions for liquid mixtures. Aiche Journal 14(1): 135-144. https://doi.org/10.1002/aic.690140124

[13] Wang H, Lu K, Peng X. (2013). Comparison of Wilson, UNIQUAC and NRTL activity coefficient models for the phase equilibria of systems containing ionic liquids. Journal of Beijing University of Chemical Technology (Natural Science Edition) 40(1): 10-15. https://doi.org/10.13543/j.cnki.bhxbzr.2013.01.015

[14] Touhara H, Okazaki S, Okino F. (1982). Thermo- dynamic properties of aqueous mixtures of hydrophilic compounds 2. Aminoethanol and its methyl derivatives. Chem. Thermo- Dynamics 14(2): 145-156. https://doi.org/10.1016/0021-9614(82)90026-X

[15] Belabbaci A, Razzouk A, Mokbel I. (2009). Isothermal Vapor−Liquid Equilibria of (Monoethanolamine+Water) and (4-Methylmorpholine+Water) Binary Systems at Several Temperatures. Journal of Chemical & Engineering Data 54(8): 270-271. https://doi.org/10.1021/je960118o

[16] Park SJ, Shin HY, Min BM. (2009). Vapor-liquid equilibria of water+ monoethanolamine system. Korean Journal of Chemical Engineering 26(1): 189-192. https://doi.org/10.1007/s11814-009-0031-z

[17] Kim I, Svendsen HF, Børresen E. (2008). Ebulliometric determination of vapor−liquid equilibria for pure water, monoethanolamine, n-methyldiethanolamine, 3-(methyl- amino)-propylamine, and their binary and ternary solutions. Journal of Chemical & Engineering Data 53(11): 2521–2531. https://doi.org/10.1021/je800290k

[18] Maham Y, Mather AE, Mathonat C. (2000). Excess properties of (alkyldiethanol- amine+H2O) mixtures at temperatures from (298.15 to 338.15) K. Journal of Chemical Thermodynamics 32(2): 229-236. https://doi.org/10.1006/jcht.1999.0595

[19] Mukherjee S, Mishra PC, Chaudhuri P, Banerjee G. (2018). Theoretical modeling and optimization of microchannel heat sink cooling with TiO2-water and ZnO- water nanofluids. International Journal of Heat and Technology 36(1): 165-172. https://doi.org/10.18280/ ijht.360122