Numerical Analysis of Thermal Performance in a Finned Cylinder for Latent Heat Thermal System (LHTS) Applications

Numerical Analysis of Thermal Performance in a Finned Cylinder for Latent Heat Thermal System (LHTS) Applications

Ahmadpour V.Ahmadi N. Rezazadeh S. Sadeghiazad M. 

Urmia University of Technology, Mechanical Engineering Department, Farhang street number 177, Valfajr blvd, Urmia, Iran

Urmia University, Mechanical Engineering Department, Iran

Corresponding Author Email:
30 June 2013
| Citation



In this paper a two- dimensional numerical model has been studied to investigate the effects of radial fins in an annulus cylinder type for latent thermal energy storage system and the heat transfer improvement in solidification process of a phase change material (PCM) with an imposed temperature to inner tube wall by using of finite volume technique. To validate the model, results are compared with available published literature. Grid independence of prepared in- house codes for various mesh numbers has been examined, also effect of different time steps has been investigated. Simulations have been carried out for different geometrical parameters of system and wall condition. The results show significant differences with use of fins in system's thermal performance compared to a bare one. Results depict that increasing wall temperature difference; fin length and number improve thermal performance and give a shorter freezing time that is a desired practical aims.


[1] Alexiades, V., Solomon, A.L. (1993) Mathematical Modeling of Melting and Freezing Processes. Hemisphere, New York

[2] Jegadheeswaran, S., Pohekar, S.D. Performance enhancement in latent heat thermal storage system: A review (2009) Renewable and Sustainable Energy Reviews, 13 (9), pp. 2225-2244. doi: 10.1016/j.rser.2009.06.024

[3] Farid, M.M., Khudhair, A.M., Razack, S.A.K., Al-Hallaj, S. A review on phase change energy storage: Materials and applications (2004) Energy Conversion and Management, 45 (9-10), pp. 1597-1615. doi: 10.1016/j.enconman.2003.09.015

[4] Agyenim, F., Hewitt, N., Eames, P., Smyth, M. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS) (2010) Renewable and Sustainable Energy Reviews, 14 (2), pp. 615-628. doi: 10.1016/j.rser.2009.10.015

[5] Zalba, B., Marín, J.M., Cabeza, L.F., Mehling, H. Review on thermal energy storage with phase change: Materials, heat transfer analysis and applications (2003) Applied Thermal Engineering, 23 (3), pp. 251-283. doi: 10.1016/S1359-4311(02)00192-8

[6] Lorenzini, G., Garcia, F.L., Dos Santos, E.D., Biserni, C., Rocha, L.A.O. Constructal design applied to the optimization of complex geometries: T-Y-shaped cavities with two additional lateral intrusions cooled by convection (2012) International Journal of Heat and Mass Transfer, 55 (5-6), pp. 1505-1512. doi: 10.1016/j.ijheatmasstransfer.2011.10.057

[7] Kim, Y., Lorente, S., Bejan, A. Steam generator structure: Continuous model and constructal design (2011) International Journal of Energy Research, 35 (4), pp. 336-345. doi: 10.1002/er.1694

[8] Lacroix, M. Study of the heat transfer behavior of a latent heat thermal energy storage unit with a finned tube (1993) International Journal of Heat and Mass Transfer, 36 (8), pp. 2083-2092. doi: 10.1016/S0017-9310(05)80139-5

[9] Ismail, K.A.R., Henríquez, J.R., Moura, L.F.M., Ganzarolli, M.M. Ice formation around isothermal radial finned tubes (2000) Energy Conversion and Management, 41 (6), pp. 585-605. doi: 10.1016/S0196-8904(99)00128-4

[10] Ismail, K.A.R., Alves, C.L.F., Modesto, M.S. Numerical and experimental study on the solidification of PCM around a vertical axially finned isothermal cylinder (2001) Applied Thermal Engineering, 21 (1), pp. 53-77. doi: 10.1016/S1359-4311(00)00002-8

[11] Ismail, K.A.R., Gonçalves, M.M. Thermal performance of a pcm storage unit (1999) Energy Conversion and Management, 40 (2), pp. 115-138. doi: 10.1016/S0196-8904(98)00042-9

[12] Velraj, R., Seeniraj, R.V., Hafner, B., Faber, C., Schwarzer, K. Heat transfer enhancement in a latent heat storage system (1999) Solar Energy, 65 (3), pp. 171-180. doi: 10.1016/S0038-092X(98)00128-5

[13] Lamberg, P., Sirén, K. Approximate analytical model for solidification in a finite PCM storage with internal fins (2003) Applied Mathematical Modelling, 27 (7), pp. 491-513. doi: 10.1016/S0307-904X(03)00080-5

[14] Stritih, U. An experimental study of enhanced heat transfer in rectangular PCM thermal storage (2004) International Journal of Heat and Mass Transfer, 47 (12-13), pp. 2841-2847. doi: 10.1016/j.ijheatmasstransfer.2004.02.001

[15] Gharebaghi, M., Sezai, I. Enhancement of heat transfer in latent heat storage modules with internal fins (2008) Numerical Heat Transfer; Part A: Applications, 53 (7), pp. 749-765. doi: 10.1080/10407780701715786

[16] Agyenim, F., Eames, P., Smyth, M. A comparison of heat transfer enhancement in a medium temperature thermal energy storage heat exchanger using fins (2009) Solar Energy, 83 (9), pp. 1509-1520. doi: 10.1016/j.solener.2009.04.007

[17] Sugawara, M., Komatsu, Y., Makabe, T., Beer, H. Three dimensional freezing around a coolant-carrying tube (2010) Heat and Mass Transfer/Waerme- und Stoffuebertragung, 46 (11-12), pp. 1307-1314. doi: 10.1007/s00231-010-0651-1

[18] Ogoh, W., Groulx, D. Effects of the number and distribution of fins on the storage characteristics of a cylindrical latent heat energy storage system: A numerical study (2012) Heat and Mass Transfer/Waerme- und Stoffuebertragung, 48 (10), pp. 1825-1833. doi: 10.1007/s00231-012-1029-3

[19] Date, A.W. Novel strongly implicit enthalpy formulation for multidimensional Stefan problems (1992) Numerical Heat Transfer, Part B: Fundamentals, 21 (2), pp. 231-251. doi: 10.1080/10407799208944918

[20] Patankar, S.V. Numerical heat transfer and fluid flow. (1980). ISBN: 0070487405; 978-007048740-6