Turbulent Natural Convection Heat Transfer in Nano Fluids with Thermal Stratification - An Experimental Study

Turbulent Natural Convection Heat Transfer in Nano Fluids with Thermal Stratification - An Experimental Study

Prasad L.S.V. Subrahmanyam T. Sarma P.K.Dharma Rao V. Sharma K.V. 

College of Engineering, Andhra University, Visakhapatnam 530 003, India

College of Engineering, GITAM University, Visakhapatnam 530 045, India

GVP College of Engineering (A), Visakhapatnam 530 048, India

Corresponding Author Email: 
sarmapk@yahoo.com
Page: 
63-73
|
DOI: 
https://doi.org/10.18280/ijht.310109
Received: 
N/A
|
Accepted: 
N/A
|
Published: 
30 June 2013
| Citation

OPEN ACCESS

Abstract: 

The natural convection heat transfer characteristics of nanoparticles dispersion in demineralised water is investigated for different volume fractions of three nanoparticles. Heat transfer data for the sample nanofluids in transition and turbulent zones of natural circulation flow are measured. The effects of factors such as volume fraction Ø, thermo physical properties of suspended nanoparticles and thermal stratification S on heat transfer are discussed further. The experimental data indicate a decrease in natural convection heat transfer when nanoparticles are added to water. A non-dimensional equation using the experimental data is developed for the estimation of Nusselt number as a function of Rayleigh number. Natural Convection - Heat Transfer - Nano fluids [CuO,.

  References

[1] Das, S.K., Choi, S.U.S., Yu, W., Pradeep, T. Nanofluids: Science and Technology (2007) Nanofluids: Science and Technology, pp. 1-397. http://onlinelibrary.wiley.com.ezproxy3.lhl.uab.edu/book/10.1002/9780470180693 ISBN: 978-047007473-2 doi: 10.1002/9780470180693

[2] Choi, S.U.S.Nanofluids: From vision to reality through research (2009) Journal of Heat Transfer, 131 (3), pp. 1-9. http://asmedl.aip.org.ezproxy3.lhl.uab.edu/getpdf/servlet/GetPDFServlet?filetype=pdf&id=JHTRAO000131000003033106000001&idtype=cvips&prog=normal doi: 10.1115/1.3056479

[3] Yu, W., France, D.M., Routbort, J.L., Choi, S.U.S. Review and comparison of nanofluid thermal conductivity and heat transfer enhancements (2008) Heat Transfer Engineering, 29 (5), pp. 432-460. doi: 10.1080/01457630701850851

[4] Tyler, T., Shenderova, O., Cunningham, G., Walsh, J., Drobnik, J., McGuire, G. Thermal transport properties of diamond-based nanofluids and nanocomposites (2006) Diamond and Related Materials, 15 (11-12 SPEC. ISS.), pp. 2078-2081.doi: 10.1016/j.diamond.2006.08.007

[5] Das, S.K., Choi, S.U.S., Patel, H.E. Heat transfer in nanofluids - A review (2006) Heat Transfer Engineering, 27 (10), pp. 3-19. doi: 10.1080/01457630600904593

[6] Liu, M.-S., Ching-Cheng Lin, M., Huang, I.-T., Wang, C.-C. Enhancement of thermal conductivity with carbon nanotube for nanofluids (2005) International Communications in Heat and Mass Transfer, 32 (9), pp. 1202-1210. doi: 10.1016/j.icheatmasstransfer.2005.05.005

[7] Choi, S.U.S., Zhang, Z.G., Keblinski, P. (2004) "Nanofluids," in Encyclopedia of Nanoscience and Nanotechnology, 6, pp. 757-1737. Nalwa, H.S., Ed., American Scientific, Los Angeles, Calif, USA 

[8] Xuan, Y., Li, Q. Investigation on convective heat transfer and flow features of nanofluids (2003) Journal of Heat Transfer, 125 (1), pp. 151-155. doi: 10.1115/1.1532008

[9] You, S.M., Kim, J.H., Kim, K.H. Effect of Nanoparticles on Critical Heat Flux of Water in Pool Boiling Heat Transfer 

[10] Das, S.K., Putra, N., Roetzel, W. Pool boiling characteristics of nano-fluids (2003) International Journal of Heat and Mass Transfer, 46 (5), pp. 851-862. doi: 10.1016/S0017-9310(02)00348-4

[11] Okada, M., Suzuki, T. Natural convection of water - Fine particle suspension in a rectangular cell (1997) International Journal of Heat and Mass Transfer, 40 (13), pp. 3201-3208. http://www.journals.elsevier.com/international-journal-of-heat-and-mass-transfer/ doi: 10.1016/S0017-9310(96)00365-1

[12] Kang, C., Okada, M., Hattori, A., Oyama, K. Natural convection of water-fine particle suspension in a rectangular vessel heated and cooled from opposing vertical walls (classification of the natural convection in the case of suspension with a narrow-size distribution) (2001) International Journal of Heat and Mass Transfer, 44 (15), pp. 2973-2982. doi: 10.1016/S0017-9310(00)00286-6

[13] Khanafer, K., Vafai, K., Lightstone, M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids (2003) International Journal of Heat and Mass Transfer, 46 (19), pp. 3639-3653. http://www.journals.elsevier.com/international-journal-of-heat-and-mass-transfer/ doi: 10.1016/S0017-9310(03)00156-X

[14] Jou, R.-Y., Tzeng, S.-C. Numerical research of nature convective heat transfer enhancement filled with nanofluids in rectangular enclosures (2006) International Communications in Heat and Mass Transfer, 33 (6), pp. 727-736. doi: 10.1016/j.icheatmasstransfer.2006.02.016

[15] Putra, N., Roetzel, W., Das, S.K. Natural convection of nano-fluids (2003) Heat and Mass Transfer/Waerme- und Stoffuebertragung, 39 (8-9), pp. 775-784. doi: 10.1007/s00231-002-0382-z

[16] Wen, D., Ding, Y. Formulation of nanofluids for natural convective heat transfer applications (2005) International Journal of Heat and Fluid Flow, 26 (6), pp. 855-864. doi: 10.1016/j.ijheatfluidflow.2005.10.005

[17] Sharma, K.V., Sarma, P.K., Azmi, W.H., Mamat, R., Kadirgama, K. Correlations to predict friction and forced convection heat transfer coefficients of water based nano fluids for turbulent flow in a tube International Journal of Microscale and Nano Scale Thermal Fluid Transport Phenomena. Accepted for Publication

[18] Khanafer, K., Vafai, K. A critical synthesis of thermophysical characteristics of nanofluids (2011) International Journal of Heat and Mass Transfer, 54 (19-20), pp. 4410-4428. doi: 10.1016/j.ijheatmasstransfer.2011.04.048

[19] James Clerk, M. A treatise on electricity and magnetism (2010) A Treatise on Electricity and Magnetism, 9781108014038, pp. 1-442. http://dx.doi.org.ezproxy3.lhl.uab.edu/10.1017/CBO9780511709333 ISBN: 978-051170933-3; 978-110801403-8 doi: 10.1017/CBO9780511709333

[20] Naik, M.T., Syam Sundar, L. Investigation into thermo physical properties of glycol based CuO nanofluid for heat transfer applications (2011) World Academy of Science, Engineering and Technology, 59. 

[21] Xuan, Y., Roetzel, W. Conceptions for heat transfer correlation of nanofluids (2000) International Journal of Heat and Mass Transfer, 43 (19), pp. 3701-3707. doi: 10.1016/S0017-9310(99)00369-5

[22] Ho, C.J., Liu, W.K., Chang, Y.S., Lin, C.C.Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: An experimental study (2010) International Journal of Thermal Sciences, 49 (8), pp. 1345-1353. http://www.journals.elsevier.com/international-journal-of-thermal-sciences/ doi: 10.1016/j.ijthermalsci.2010.02.013