LCA Analysis of a Solar Concentration System for the Micro-CHP and Comparison with a PV plant

LCA Analysis of a Solar Concentration System for the Micro-CHP and Comparison with a PV plant

M. Cucumo V. Ferraro  V. Marinelli  S. Cucumo  D. Cucumo 

Department of Mechanical Engineering - University of Calabria - 87036 Rende (CS), Italy

Corresponding Author Email: 
@ m.cucumo unical.it
Page: 
62-68
|
DOI: 
https://doi.org/10.18280/ijht.300110
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

Life Cycle Assessment (LCA) is one of the main instruments for the implementation of an Integral Policy of Products, and it is also an operating instrument of Life Cycle Thinking: LCA is an objective methodology of assessment and quantification of the energetic and environmental loads and of the potential impacts associated with a product/process/activity throughout the entire lifecycle, from the acquisition of raw materials up to disposal.

The results of an LCA analysis applied to a solar concentrating type Dish-Stirling for micro-CHP are presented in this work. An estimate of the environmental impacts of the concentration system, in comparison with impacts of a PV system located on a sloped roof with a retrofit system and of the Italian energy mix, is also performed by the Eco-indicator 99, and EPD 2007 methods.

1. Introduction
2. System Description
3. Functional Unity and Disposal Scenario
4. Energy Analysis
5. Impact assessment with Eco-indicator 99 Method
6. Impact Assessment with EPD 2007 Method
7. Conclusions
  References

[1] Gian Luca Baldo, Massimo Marino, Stefano Rossi, Analisi del ciclo di vita LCA: Materiali, prodotti,

processi, Edizioni Ambiente, 2005.

[2] Paolo Neri, Verso la valutazione ambientale degli edifici – Life Cycle Assessment a supporto della progettazione eco-sostenibile, Alinea Editrice, Firenze 2007.

[3] Sociey of Environmental Toxicology and Chemistry (SETAC): Guidelines for Life-Cycle Assessment, A

“Code of Practise”; SETAC Workshop in Seimbra 31/03-03/04/1993, Brussels, 1993.

[4] UNI EN ISO 14001 (1996): Sistemi di gestione ambientale, requisiti e guida per l’uso.

[5] UNI EN ISO 14040 (1998): Valutazione del ciclo divita, principi e quadro di riferimento.

[6] UNI EN ISO 14041 (1999): Valutazione del ciclo divita, definizione dell’obiettivo e del campo diapplicazione e analisi di inventario.

[7] UNI EN ISO 14042 (2001): Valutazione del ciclo divita, valutazione dell’impatto del ciclo di vita.

[8] UNO EN ISO 14043 (2001): Valutazione del ciclo divita, interpretazione del ciclo di vita.

[9] K. Lovegrave, T. Taumoefolau, S. Paitoonsurikarn, P.Siangsukone, G. Burgess, A. Luzzi, G. Johnston, O.

Becker, W. Joe, G. Major, Paraboloidal dish solarconcentrator for multi-megawatt power generation, in

Proc. 2003 International Solar Energy Society – SolarWorld Congress. Gothenburg, Sweden.

[10] P. Siansukone, K. Lovegrave, Modelling of 400 m2steam based paraboloidal dish concentrator for solar

thermal power production, in Proc. 2003 Annual Conference of the Australian and New Zealand Solar

Energy Society, Melbourne, Australia.

[11] Stephen, Charles, Andrew Nicholas, A linear free-piston Stirling Machine, Publication n° WO 2006/067429 A1,June 2006.

[12] ANPA, 2000. Database I-LCA, Banca dati italiana a supporto della valutazione del ciclo di vita: manuale.

[13] CPM, Chalmers University of Technology, Banca datiper LCA

[14] IPPC, 2001, Best Available Techniques Reference Document on the Production of Iron and Steel,

Integrated Pollution Prevention and Control, European Commission, December 2001.

[15] Karl. E.K., Theresa, L.J., 2002, Initial empirical results for the energy payback time of photovoltaic modules,

Siemens Solar Industries, Camarillo.

[16] Mario A. Cucumo, Valerio Marinelli, Giuseppe Oliveti, Ingegneria solare – Principi e applicazioni, Pitagora

Editrice, Bologna.

[17] Pré Consultans B.V. Plotterweg, The Eco-Indicator 99, methodology report, April 2000.

[18] ANPA, Linee guida per la dichiarazione ambientale diprodotto EPD, March 2001.