Spatial Distribution Behavior of Basic Pollutants in a Subsurface-Flow Wetland with Thalia Geniculata

Spatial Distribution Behavior of Basic Pollutants in a Subsurface-Flow Wetland with Thalia Geniculata

Gaspar López-ocaña Raúl G. Bautista-margulis Arturo Valdes Manzanilla Carlos A. Torres-balcazar Rocío López-vidal Eúnice Pérez-sánchez Liliana Pampillón-gonzález

División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, México

Available online: 
| Citation



Constructed wetland is a technically feasible, economically viable and environmentally sustainable natural technology that contributes at reducing greenhouse gases in the wastewater treatment. In this context, a pilot-scale subsurface horizontal-flow constructed wetland (HF-CW) was evaluated by using Thalia geniculata as native vegetation. The reactor operated with an average flow rate of 204 ± 66 L/ day of wastewater, with gravel support medium diameter of 2.8 ± 0.8 cm, porosity of n = 56.3 ± 3.5 and density of 1,666.7 ± 119.3 kg/m3, with 4.2 days as a hydraulic retention time. The HF-CW weighs approximately 2,600 kg, considering 1,108 kg of gravel, 850 kg of water and the weight of the container (carbon steel). The kinetic behavior was observed to be first order with k = −0.43 days−1, favoring the efficiency of biological oxygen demand removal up to 90%. During the experiments, it was shown that the bacterial biomass attached to the support material decreased its concentration from influent to effluent (33,000 to 2,000 mg/kg, mg of fixed biomass attached to each kg of gravel). For the electrical con- ductivity, color and turbidity, values were found to decrease in the order of 7.2 ± 4.8%, 86.7 ± 6.8% and 90.3 ± 5.8%, respectively. From the current experimental results, it was demonstrated that constructed wetlands, involving native species as vegetation, are highly efficient for the removal of basic pollutants. 


constructed wetlands, macrophytes, removal efficiency, wastewater treatment


[1] Helmer, R. & Hespanhol, I., Water Pollution Control, 1st ed. WHO, UNEP: Great Britain, 1997. Retrieved on June 13, 2019.

[2] USEPA., Office of Research and Development Cincinnati, Ohio, EPA/625/R-99/010, Design Manual: Constructed wetlands treatment of municipal wastewater, September 2000.

[3] Ayaz, S.C. & Akca, L., Treatment of wastewater by natural systems. Environment International, 26(3), pp. 189–195, 2001. Retrieved on June 13, 2019.

[4] Song, Z., Bi, X. & Cao, J., Application of constructed wetlands in sewage treatment in small cities in China. Chinese Journal of Ecology, 22(3), pp. 74–78, 2002.

[5] Mantovi, P., Marmiroli, M., Maestri, E., Tagliavini, P.S. & Marmiroli, N., Application of a horizontal subsurface flow constructed wetland on treatment of dairy parlor wastewater. Bioresource Technology, 88(2), pp. 85–94, 2003. Retrieved on June 13, 2019.

[6] Burgoon, P.S., DeBusk, T.A., Reddy, K.R. & Koopman, B., Vegetated submerged beds with artificial substrates. I: BOD removal. Journal of Environmental Engineering, 117(4), pp. 394–407. file:///C:/Users/User/Documents/MANUALES,%20LIBROS%20Y%20ARTICULOS%20PARA%20CONSULTA/163.Vegetated%20submerged%20beds.pdf. Retrieved on June 13, 2019.

[7] Guodong, J., Sun, T., Zhou, Q., Sui, X., Chang, S. & Li, P., Constructed subsurface. Ecological Engineering, 18, pp. 459–465, 2002.

[8] Wei, L., Wu, Z.-B., Cheng, S.-P., Zhou, Q.-H. & Hu, H.-Y., Roles of substrate microorganisms and urease activities in wastewater purification in a constructed wetland system. Ecological Engineering, 21, pp. 191–195, 2003. DOI: 10.1016/j.ecoleng.2003.11.002.

[9] Ramos, E.M.G., Rodríguez, S.L.M. & Martínez, C.P., Uso de macrófitos acuáticas en el tratamiento de aguas para el cultivo de maíz y sorgo. Hidrobiología, 17(1 suplemento), pp. 7–15, 2007. Retrieved on June 13, 2019.

[10] Ong, S.A., Uchiyama, K., Inadama, D. & Yamagiwa, K., Simultaneous removal of color, organic compounds and nutrients in azo dye-containing wastewater using upflow constructed wetland. Journal of Hazardous Materials, 165, pp. 696–703, 2009. Retrieved on June 13, 2019.

[11] Grafias, P., Xekoukoulotakis, N.P., Mantzavinos, D. & Diamadopoulos, E., Pilot treatment of olive pomace leachate by vertical-flow constructed wetland and electrochemical oxidation: An efficient hybrid process. Water Research, 44, pp. 2773–2780, 2010.

[12] Comisión Nacional del Agua (CONAGUA), Inventario Nacional de Plantas Municipales de Potabilización y de Tratamiento de Aguas Residuales en Operación. Subdirección General de Agua Potable, Drenaje y Saneamiento, Diciembre 2016, 2015. Retrieved on June 13, 2019.

[13] Secretaria de Medio Ambiente y Recursos Naturales (SEMARNAT) y Comisión Nacional del Agua (CONAGUA), Manual de Agua Potable, Alcantarillado y Saneami ento. Diseño de Plantas de Tratamiento de Aguas Residuales Municipales: Humedales Artificiales. Subdirección General de Agua Potable, Drenaje y Saneamiento, ISBN: 978-607-626-010-4, 2015, Retrieved on June 13, 2019.

[14] López Ocaña, G., Torres Balcázar, C.A., Bautista Margulis, R.G., Hernández Barajas, J.R., Gutiérrez Vidal, J.J., de la Cruz Luna, E. & Ferrer Sánchez, M.I., Diseño de sistemas experimentales de humedales artificiales de flujo libre y subsuperficial. Perspectiva Científica desde la UJAT. Editorial UJAT. Tabasco, Mexico., ISBN: 978-607-606-172-5, pp. 133–146, 2014.

[15] Crites, R.W. & Tchobanoglous, G., Small and Decentralized Wastewater Management Systems, McGraw Hill Co.: New York, NY, 2000.

[16] Chung, A.K.C., Wu, Y., Tam, N.F.Y. & Wong, M.H., Nitrogen and phosphate mass balance in a sub-surface flow constructed wetland for treating municipal wastewater. Ecological Engineering, 32, pp. 81–89, 2008, available at

[17] McCabe, W.L., Smith, J.C. & Harriot, P., Operaciones Unitarias en Ingeniería Química, Cuarta Edición. 1991. Madrid.

[18] Surfer 8.0. Powerful Contouring, Gridding, and 3D Surface Mapping Software for Scientists and Engineers. Surfer® Software. E-mail

[19] Kivaisi, A.K., The potential for constructed wetlands for wastewater treatment and reuse in developing countries: A review. Ecological Engineering, 16, pp. 545–560, 2000. DOI: 10.1016/S0925-8574(00)00113-0.

[20] NOM-001-SEMARNAT-1996, Que establece los límites máximos permisibles de contaminantes en las descargas de aguas residuales en aguas y bienes nacionales. Secretaría de Medio Ambiente, Recursos Naturales y Pesca. Diario Oficial de la Federación. 23 de Abril de 2003.

[21] Akratos, S.C. & Tsihrintzis, A.V., Effect of temperature, HRT, vegetation and porous media on removal efficiency of pilot-scale horizontal subsurface flow constructed wetlands. Ecological Engineering, 29, pp. 173–191, 2007, available at

[22] Jiménez-López, E.C., López-Ocaña, G., Bautista-Margulis, R.G., Castelán-Estrada, M., Guerrero-Peña, A., Hernández-Barajas, J.R., Torres-Balcázar, C.A., de la Cruz-Luna, E. & Romellón-Cerino, M.J., Solís-Silvan, wastewater treatment by constructed wetlands with Thalia geniculata and Paspalum paniculatum in a tropical system of Mexico. The International Journal of Sustainable Development and Planning, 12(1), pp. 42–50, 2017. DOI: 10.2495/SDP-V12-N1-42-50.

[23] Morari, F. & Giardini, L., Municipal wastewater treatment with vertical flow constructed wetlands for irrigation reuse. Ecological Engineering, 35, pp. 643–653, 2009, available at Retrieved on June 13, 2019.

[24] Solano, M.L., Soriano, P. & Ciria, M.P., Constructed wetlands as a sustainable solution for wastewater treatment in small villages. Biosystem Engineering, 87(1), pp. 109–118, 2004. DOI: 10.1016/j.biosystemseng.2003.10.005.

[25] Abidi, S., Kallali, H., Jedidi, N., Bouzaiane, O. & Hassen, A., Comparative pilot study of the performances of two constructed wetland wastewater treatment hybrid systems. Desalination, 246, pp. 370–377, 2009, available at Retrieved on June 13, 2019.

[26] Vymazal, J., Emergent plants used in free water surface constructed wetlands: A review. Ecological Engineering, 61, pp. 582–592, 2013, available at Retrieved on June 13, 2019.

[27] Kadlec, R.H. & Knight, R. Treatment Wetlands, Lewis Publishers: Boca Raton, FL, 1996.

[28] Silva, J., Torres, P. & Madera, C., Reuso de aguas residuales domésticas en agricultura: Una revisión. Agronomía Colombiana, 2, pp. 347–359, 2008. Retrieved on June 13, 2019.

[29] Kadlec, R.H. 2009. Comparison of free water and horizontal subsurface treatment wetlands. Ecological Engineering, 35, pp. 159–174. Retrieved on June 13, 2019.

[30] Seoánez, M., Aguas residuales, Mundi-Prensa: Madrid, 61 p., 1999.

[31] Barbaro, L.A., Karlanian, M.A. & Mata, D.A., Importancia del pH y la Conductividad Eléctrica (CE) en los sustratos para plantas. Argentina: Instituto Nacional de Tecnologías Agropecuarias, pp. 7–8, 2014.

[32] Marcó, L., Azario, R., Metzler C y Garcia, M.C. La turbidez como indicador básico de calidad de aguas potabilizadoras a partir de fuentes superficiales. Hig. Sanid. Ambient., 4, pp. 72–82, 2004.

[33] Delgadillo, O., Camacho, A., Pérez, F. & Andrade, M., Depuración de aguas residuales por medio de humedales artificiales. Bolivia: Centro Andino para la Gestión y Uso del Agua (Centro AGUA) Cochabamba, 2010.

[34] APHA., Standard Methods for Examination of Water and Wastewater, Washington, DC: American Public Health Association WWA, 2001.

[35] López-Ocaña, G., Bautista-Margulis, G., Ramos Herrera, S., Torres-Balcazar, C.A., López-Vidal, R. & Pampillón-González, L., Phytoremediation of wastewater with Thalia Geniculata in constructed wetlands: Basic pollutant distribution. WIT Transactions on Ecology and the Environment, Vol. 228, WIT Press, 2018, ISSN 1743-3541. Great Britain. DOI: 10.2495/WP1871.