Wave Overtopping and Flood Risk Assessment in Harbours: The Port of Las Nieves and Its Future Expansion

Wave Overtopping and Flood Risk Assessment in Harbours: The Port of Las Nieves and Its Future Expansion

J. Santana-Ceballos C.J.E.M. Fortes M.T. Reis Germán Rodríguez

Departamento de Física, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain

Laboratorio Nacional de Engenharia Civil (LNEC), Lisbon, Portugal

Applied Marine Physics and Remote Sensing Group, Institute of Environmental Studies and Natural Resources (iUNAT), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain

Page: 
59-71
|
DOI: 
https://doi.org/10.2495/EI-V2-N1-59-71
Received: 
N/A
|
Revised: 
N/A
|
Accepted: 
N/A
|
Available online: 
N/A
| Citation

OPEN ACCESS

Abstract: 

This article presents the analysis of the probability of occurrence of wave overtopping events as well as its consequences at the Port of Las Nieves in Agaete, Gran Canaria Island, with the evaluation of the resulting level of flood risk. The study involves both the existing breakwater and its planned future expansion toward deeper waters and has been conducted using a third-generation spectral wave model, to reproduce wave propagation from deep to shallow water depths considering the associated mean sea level, and a neural network-based model, for estimating mean wave overtopping discharges. Results reveal that, in both cases, the access area to the infrastructure presents a risk level substantially higher than that associated with the cross-sections of the main body of the breakwater. Thus, control actions to reduce overtopping in the initial sections are required for the existing structure, and this fact should be seriously taken into account in the planning and construction phases of its extension, due to the impor- tant socioeconomic implications regarding the infrastructure inoperability.

Keywords: 

flood risk, neural networks, Port of Las Nieves, wave overtopping

  References

[1] Owen, M.W., Design of seawalls allowing for wave overtopping. Report Ex, 924, p. 39, 1980.

[2] Besley, P., Overtopping of Seawalls: Design and Assessment Manual. R & D Technical Report, Environment Agency: Bristol, 1999.

[3] Reis, M.T., Hedges, T.S., Neves, S., Neves, M.G., Hu, K. & Mase, H., Extending the H&R wave overtopping model to vertical structures. Proc. 6th SCACR–International Short Course/Conference on Applied Coastal Research, Lisboa, Portugal, 2013.

[4] EurOtop, Manual on Wave Overtopping of Sea Defences and Related Structures. An Overtopping Manual Largely Based on European Research, But for Worldwide Application, eds. J.W. Van der Meer, N.W.H. Allsop, T. Bruce, J. De Rouck, A. Kortenhaus, T. Pullen, H. Schüttrumpf, P. Troch, & B. Zanuttigh, available at www.overtoppingmanual. com, 2016 (accessed 20 February 2017).

[5] Franco, L., Briganti, R. & Bellotti, G., Ostia Site Report on Full Scale Measurements, 2nd full winter season, Modimar SRL: Rome, Italy, 2005.

[6] Geeraerts, J. & Boone, C., Report on Full Scale Measurements in Zeebrugge, 2nd full winter season, CLASH WP3 – Report, Ghent University: Belgium, 2004.

[7] Hordijk, D., Report on Field Measurements – Petten sea defence: Storm Season 2003–2004, CLASH WP3 – Report, Rijkswaterstaat: The Netherlands.

[8] Pullen, T. & Allsop, N.W.H., D33 Report on Full Scale Measurements – Samphire Hoe, CLASH WP3 – Report, HR: Wallingford, UK, 2004.

[9] Carrasco, A.R., Reis, M.T., Neves, M.G., Ferreira, Ó., Matias, A. & Almeida, S., Overtopping hazard on a rubble mound breakwater. Journal of Coastal Research, 70(sp1), pp. 247–252, 2014. DOI: 10.2112/SI70-042.1.

[10] Kortenhaus, A. et al., CLASH: D40 Report on Conclusions of Scale Effects, CLASH WP7 – Report, LWI: Germany, 2005.

[11] De Rouck, J., Geeraerts, J., Troch, P., Kortenhaus, A., Pullen, T. & Franco, L., New results on scale effects for wave overtopping at coastal structures. International Conference on Coastlines, Structures and Breakwaters 2005: Harmonising Scale and Detail – Proceedings of the International Conference on Coastlines, Structures and Breakwaters 2005, Vol. 2006: London, pp. 29–43, 2005.

[12] Hu, K., Mingham, C.G. & Causon, D.M., Numerical simulation of wave overtopping of coastal structures using the non-linear shallow water equations. Coastal Engineering, 41(4), pp. 433–465, 2000. DOI: 10.1016/S0378-3839(00)00040-5.

[13] Losada, I.J., Lara, J.L., Guanche, R. & Gonzalez-Ondina, J.M., Numerical analysis of wave overtopping of rubble mound breakwaters. Coastal Engineering, 55(1), pp. 47–62, 2008. DOI: 10.1016/j.coastaleng.2007.06.003.

[14] Didier, E., Neves, D., Teixeira, P. & Neves, M.G., SPH numerical and physical modelling of wave overtopping over a porous breakwater. Proc. 3rd IAHR Europe Congress, April 14–16, 2014, Porto, Portugal, 2014.

[15] Reis, M.T., Neves, M.G., Lopes, M.R., Hu, K. & Silva, L.G., Rehabilitation of Sines west breakwater: wave overtopping study. Proceedings of the Institution of Civil Engineers-Maritime Engineering, 164(1), pp. 15–32, 2011. DOI: 10.1680/maen.2011.164.1.15.

[16] Zijlema, M., Stelling, G. & Smit, P., SWASH: an operational public domain code for simulating wave fields and rapidly varied flows in coastal waters. Coastal Engineering, 58(10), pp. 992–1012, 2011. DOI: 10.1016/j.coastaleng.2011.05.015.

[17] Zou, Q.P., et al., Ensemble prediction of coastal flood risk arising from overtopping by linking meteorological, ocean, coastal and surf zone models. Quarterly Journal of the Royal Meteorological Society, 139(671), pp. 298–313, 2013. DOI: 10.1016/j.coastaleng.2011.01.001.

[18] Medina, J., Gonzalez-Escriva, J., Garrido, J., & De Rouck, J., Overtopping analysis using neural networks. Proceedings 28th International Conference Coastal Engineering-Solving Coastal Conundrums, 2, pp. 2165–2177, 2003. DOI: 10.1142/9789812791306_0182.

[19] Wedge, D.C., Ingram, D.M., Mingham, C.G., McLean, D.A. & Bandar, Z.A., Neural network architectures and overtopping predictions. Maritime Engineering, 158(3), pp. 123–133, 2005. DOI: 10.1680/maen.2005.158.3.123.

[20] Coeveld, E.M., Van Gent, M.R.A. & Pozueta, B., Neural Network: Manual NN_Overtopping 2. CLASH WP8, WL-Delft Hydraulics: Delft, The Netherlands, 2005.

[21] Verhaeghe, H., Neural network prediction of wave overtopping at coastal structures. PhD Thesis, Universiteit Gent: Belgium, 2005.

[22] Reis, M.T., et al., Previsão dos galgamentos na baía da Praia da Vitória para avaliação de risco e alerta. Proc. VI Congresso Planeamento e Gestão das Zonas Costeiras, Boa Vista, Cabo Verde, 2011.

[23] Poseiro, P., Fortes, C.J.E.M., Santos, J.A., Reis, M.T. & Craveiro, J., Aplicação do processo de análise hierárquica (AHP) à análise das consequências de ocorrência de galgamentos. O caso da baía da Praia da Vitória”. Proc. 8as Jornadas Portuguesas de Engenharia Costeira e Portuária, AIPCN/PIANC: Lisboa, p. 10, 2013.

[24] Fortes, C.J.E.M., et al., Ferramenta de apoio à gestão costeira e portuária: o sistema HIDRALERTA. Proc. VIII Congresso sobre Planeamento e Gestão das Zonas Costeiras dos Países de Expressão Portuguesa e 1ª Conferência Internacional “Turismo em Zonas Costeiras – Oportunidades e Desafios”, Aveiro, 14 a 16 de outubro, 2015. ISBN: 978-989-8509-12-3.

[25] Martínez, A., Pérez, E., Bruno, M. & Rodríguez, G., Analysis of the sea levels and tidal currents around Gran Canaria Island. Boletín Instituto Español de ceanografía, 13(1–2), pp. 3–12, 1997.

[26] Puertos del Estado, REDMAR red de mareógrafos de puertos del estado, Informe Anual, 2009.

[27] Puertos del Estado, Resumen de parámetros relacionados con el nivel del mar y la marea que afectan a las condiciones de diseño y explotación portuaria (Puerto de Las Palmas). REDMAR. RED de MAReógrafos de Puertos del Estado, Informes Dirección Técnica, 2014.

[28] Puertos del Estado, Conjunto de datos SIMAR-44 (Proyecto HIPOCAS), 2008.

[29] Ministerio de Medio Ambiente, Estudio ecocartográfico de la zona norte litoral de la isla de Gran Canaria, 2005.

[30] British Oceanographic Data Centre (BODC), available at www.bodc.ac.uk (accessed 2 February 2017).

[31] SWAN Team, SWAN Cycle III, Version 40.85: Scientific and Technical Documentation. Delft University of Technology: Delft, The Netherlands, 2011.

[32] van der Meer, J.W., Verhaeghe, H. & Steendam, G.J., The new wave overtopping database for coastal structures. Coastal Engineering, 56(2), pp. 108–120, 2009. DOI: 10.1016/j.coastaleng.2008.03.012.

[33] Pullen, T., Allsop, N.W.H., Bruce, T., Kortenhaus, A., Schutrumpf, H. & Van Der Meer, J.W., EurOtop: Wave Overtopping of Sea Defences and Related Structures: Assessment Manual. Environment Agency, UK/Expertise Netwerk Waterkeren, NL/Kuratorium fur Forschung im Kusteningenieurwesen, DE, 178p., 2007. ISBN 978-3-8042-1064-6.

[34] Santos, J.A., et al., Aplicação de uma metodologia para avaliação do risco para a navegação e galgamentos no Porto da Praia da Vitória. Proc. 7as Jornadas Portuguesas de Engenharia Costeira e Portuária, AIPCN/PIANC: Porto, p. 6, 2011.

[35] Neves, D.R., Santos, J.A., Fortes, C.J., Reis, M.T., Rodrigues, S., Simões, A. & Azevedo, E.B., Avaliação do risco para a navegação em dois portos portugueses. Proc. IV SEMENGO– 4º Seminário e Workshop em Engenharia Oceânica, FURG, Rio Grande/RS: Brazil, 3–5 November (CD-Rom), available at http://www.semengo.furg.br/2010/04.pdf.

[36] Neves, D.R., et al., Metodologia de avaliação do risco associado ao galgamento de estruturas marítimas: Aplicação ao porto e à baía da Praia da Vitória, Açores, Portugal. Revista de Gestão Costeira Integrada, 12(3), pp. 291–312, 2012. DOI: 10.5894/rgci322.

[37] Silva, E., Santos, J.A. & Reis, M.T., Porto da Praia da Vitória. Estimativa dos galgamentos da protecção marginal da baía. 7as Jornadas Portuguesas de Engenharia Costeira e Portuária, 2011.

[38] Rocha, T. et al., Avaliação comparativa do risco de galgamentos na Praia da Vitória, Terceira, Açores, 2013.

[39] Poseiro, P., et al., A methodology for overtopping risk assessment in port areas: application to the Port of Praia da Vitória (Azores, Portugal). Proc. 6th SCACR–International Short Course/Conference on Applied Coastal Research, Lisbon, pp. 4–7, 2013.