Water Renewal Time and Trace Metal Concentration in Civitavecchia Port (Rome), Italy

Water Renewal Time and Trace Metal Concentration in Civitavecchia Port (Rome), Italy

Simone Bonamano Daniele Piazzolla Alice Madonia Francesco Paladini de Mendoza Viviana Piermattei Sergio Scanu Marco Marcelli Giuseppe Zappala

DEB Experimental Oceanology and Marine Ecology Laboratory, Tuscia University, Viterbo, Italy

Istituto per l’Ambiente Marino Costiero (IAMC), National Research Council, Messina, Italy

Page: 
450–460
|
DOI: 
https://doi.org/10.2495/EI-V1-N4-450-460
Received: 
N/A
|
Revised: 
N/A
|
Accepted: 
N/A
|
Available online: 
N/A
| Citation

OPEN ACCESS

Abstract: 

Most of the harbours can be considered as semi-enclosed areas where water stagnation leads to physical and chemical alterations due to anthropogenic activities. These features affect the quality of the port waters as well as the environmental health of coastal ecosystems in the surrounding areas. In order to understand the potential degradation of water quality within the harbour area it is essential to evaluate the hydrodynamic behaviour of the system. In this study, the DELFT3D-FLOW model, which allows to estimate the three-dimensional field velocity, was used to spatially characterize the water renewal time within the harbour. In particular, the flushing time (FT), which represents the time required for the total mass of a conservative tracer originally within the water body to be reduced to a factor 1/e, was examined. The concentration of contaminants in sediments is indeed a proper parameter to test the reliability of the calculated water renewal time within the semi-enclosed basins, since it relies on time-integrated measurements compared to single observations of water column. This research aims at studying the relation between the FT and the pollution due to trace metals in marine sediments. For this purpose, surface sediment samples were collected along a series of stations located in the innermost part and near the mouth of the Civitavecchia harbour. As, Cr, Hg, Ni, Cu, zn, Pb and Al concentrations were analysed to calculate the enrichment factor, which provides an estimate of the heavy metal contamination in the harbour surface sediment. The obtained results show a high correlation between the FT and the enrich- ment factor within the Civitavecchia port, confirming that water renewal can be used as an indicator of water quality degradation in semi-enclosed areas.

  References

[1] Grifoll, M., Jordà, G., Borja, A. & Espino, M., A new risk assessment method for water quality degradation in harbour domains, using hydrodynamic models. Marine Pollution Bulletin, 60(1), pp. 69–78, 2010. DOI: 10.1016/j.marpolbul.2009.08.030.

[2] Mali, M., De Serio, F., Dell’Anna, M.M., Mastrorilli, P., Damiani, L. & Mossa, M., Enhancing the performance of hazard indexes in assessing hot spots of harbour areas 458 S. Bonamano et al., Int. J. Environ Impacts, Vol. 1, No. 4 (2018)by considering hydrodynamic parameters. Ecological Indicators, 73, pp. 38–45, 2017. DOI: 10.1016/j.ecolind.2016.09.028.

[3] Jouon, A., Douillet, P., Ouillon, S. & Fraunie, P., Calculations of hydrodynamic time parameters in a semi-opened coastal zone using a 3D hydrodynamic model. Continental Shelf Research, 26(12), pp. 1395–1415, 2006. DOI: 10.1016/j.csr.2005.11.014.

[4] Cucco, A. & Umgiesser, G., Modeling the Venice Lagoon residence time. Ecological Modelling, 193(1), pp. 34–51, 2006. DOI: 10.1016/j.ecolmodel.2005.07.043.

[5] Torréton, J.P., Rochelle-Newall, E., Jouon, A., Faure, V., Jacquet, S. & Douillet, P., Correspondence between the distribution of hydrodynamic time parameters and the distribution of biological and chemical variables in a semi-enclosed coral reef lagoon. Estuarine Coastal and Shelf Science, 74(4), pp. 766–776, 2007. DOI: 10.1016/j.ecss.2007.05.018.

[6] Lisi, I., Taramelli, A., Di Risio, M., Cappucci, S. & Gabellini, M., Flushing efficiency of Augusta Harbour (Italy). Journal of Coastal Research, 56, pp. 841–845, 2009.

[7] Grifoll, M., Jordà, G. & Espino, M., Surface water renewal and mixing mechanisms in a semi-enclosed microtidal domain. The Barcelona harbour case. Journal of Sea Research, 90, pp. 54–63, 2014. DOI: 10.1016/j.seares.2014.02.007.

[8] Monsen, N.E., Cloern, J.E., Lucas, L.V. & Monismith, S.G., A comment on the use of flushing time, residence time, and age as transport time scales. Limnology and Oceanography, 47(5), pp. 1545–1553, 2002. DOI: 10.4319/lo.2002.47.5.1545.

[9] Dunn, R.J.K., Teasdale, P.R., Warnken, J. & Schleich, R.R., Evaluation of the diffusive gradient in a thin film technique for monitoring trace metal concentrations in estuarine waters. Environmental Science and Technology, 37(12), pp. 2794–2800, 2003. DOI: 10.1021/es026425y.

[10] Schintu, M., Durante, L., Maccioni, A., Meloni, P., Degetto, S. & Contu, A., Measurement of environmental trace-metal levels in Mediterranean coastal areas with transplanted mussels and DGT techniques. Marine Pollution Bulletin, 57(6), pp. 832–837, 2008. DOI: 10.1016/j.marpolbul.2008.02.038.

[11] Warnken, K.W., Zhang, H. & Davison, W., In situ monitoring and dynamic speciation measurements in solution using DGT comprehensive analytical chemistry. Passive Sampling Techniques in Environmental Monitoring, Vol. 48, eds. R. Greenwood, G. Mills & B. Vrana, Elsevier: Amsterdam, pp. 251–278, 2007.

[12] Salomons, W. & Forstner, U., Metals in the Hydrocycle, Springer: Berlin, pp. 349, 1984.

[13] Chase, Z., Paytan, A., Beck, A., Biller, D., Bruland, K., Measures, C. & Sañudo-Wilhelmy, S., Evaluating the impact of atmospheric deposition on dissolved trace-metals in the Gulf of Aqaba, Red Sea. Marine Chemistry, 126(1), pp. 256–268, 2011. DOI: 10.1016/j.marchem.2011.06.005.

[14] Maanan, M., Saddik, M., Maanan, M., Chaibi, M., Assobhei, O. & Zourarah, B., Environmental and ecological risk assessment of heavy metals in sediments of Nador lagoon, Morocco. Ecological Indicators, 48, pp. 616–626, 2015. DOI: 10.1016/j.ecolind.2014.09.034.

[15] Doering, P., Temporal variability of water quality in the St. Lucie estuary, South Florida. Water Resources Bulletin, 32(6), pp.1293–1306, 1996. DOI: 10.1016/B978-0-12-761890-6.50033-2.

[16] Mari, X., Rochelle-Newall, E., Torréton, J.P., Pringault, O., Jouon, A. & Migon, C., Water residence time: A regulatory factor of the DOM to POM transfer efficiency. Limnology and Oceanography, 52(2), pp. 808–819, 2007. DOI: 10.4319/lo.2007.52.2.0808.

[17] Migon, C., Ouillon, S., Mari, X. & Nicolas, E., Geochemical and hydrodynamic constraints on the distribution of trace metal concentrations in the lagoon of Nouméa, New Caledonia. Estuarine Coastal and Shelf Science, 74(4), pp. 756–765, 2007. DOI: 10.1016/j.ecss.2007.05.048.

[18] Montero, N., Belzunce-Segarra, M.J., Del Campo, A., Garmendia, J.M., Ferrer, L., Larreta, J., Gonzales, M., Maidana, M.A. & Espino, M., Integrative environmental assessment of the impact of Pasaia harbour activities on the Oiartzun estuary (southeastern Bay of Biscay). Journal of Marine Systems, 109, pp. S252–S260, 2013. DOI: 10.1016/j.jmarsys.2011.06.002.

[19] Zappalà, G., Piermattei, V., Madonia, A., Martellucci, R., Bonamano, S., Pierattini, A., Burgio, C. & Marcelli, M., Assessment of environmental conditions in Civitavecchia (Rome, Italy) harbour. WIT Transactions on Ecology and the Environment, 182, pp. 271–282, 2014. DOI: 10.2495/WP140241.

[20] Bonamano, S., de Mendoza, F.P., Piermattei, V., Martellucci, R., Madonia, A., Gnisci, V., Mancini, E., Fersini, G., Burgio, C., Marcelli, M. & Zappalà, G., Mathematical models supporting the monitoring of Civitavecchia harbour (Rome). WIT Transactions on Modelling and Simulation, 59, pp. 443–454, 2015. DOI: 10.2495/CMEM150401.

[21] Bonamano, S., Piermattei, V., Madonia, A., de Mendoza, F.P., Pierattini, A., Martellucci, R., Stefanì, C., Zappalà, G., Caruso, G. & Marcelli, M., The Civitavecchia Coastal Environment Monitoring System (C-CEMS): A new tool to analyse the conflicts between coastal pressures and sensitivity areas. Ocean Science, 12(1), pp. 87–100, 2016. DOI: 10.1016/S0025-326X(03)00289-3.

[22] Lesser, G.R., Roelvink, J.A., van Kester, J.A.T.M. & Stelling, G.S., Development and validation of a three dimensional morphological model. Coastal Engineering, 51(8), pp. 883–915, 2004. DOI: 10.1016/j.coastaleng.2004.07.014.

[23] Riddle, A.M. & Lewis, R.E., Dispersion experiments in UK coastal waters. Estuarine Coastal and Shelf Science, 51(2), pp. 243–254, 2000. DOI: 10.1006/ecss.2000.0661.

[24] Sinex, S.A. & Wright, D.A., Distribution of trace metals in the sediments and biota of Chesapeake Bay. Marine Pollution Bulletin, 19, pp. 425–431, 1988. DOI: 10.1016/0025-326X(88)90397-9.

[25] Windom, H.L., Smith, R.G. Jr & Rawlinson, C., Particulate trace metal composition and flux across the south eastern US continental shelf. Marine Chemistry, 27, pp. 283–297, 1989. DOI: 10.1016/0304-4203(89)90052-2.

[26] Din, T.B., Use of aluminum to normalize heavy metal data from estuarine and coastal sediments of straits of Melaka. Marine Pollution Bulletin, 24, pp. 484–491, 1992. DOI: 10.1016/0025-326X(92)90472-I.

[27] Woitke, P., Wellmitz, J., Helm, D., Kube, P., Lepom, P. & Litheraty, P., Analysis and assessment of heavy metal pollution in suspended solids and sediments of the river Danube. Chemosphere, 51, pp. 633–642, 2003. DOI: 10.1016/S0045-6535(03)00217-0.

[28] Zhang, W., Feng, H., Chang, J., Qu, J., Xie, H. & Yu, L., Heavy metal contamination in surface sediments of Yangtze River intertidal zone: an assessment from different indexes. Environmental Pollution, 157(5), pp. 1533–1543, 2009. DOI: 10.1016/j.envpol.2009.01.007.

[29] Turekian, K.K. & Wedepohl, D.H., Distribution of the elements in some major units of the earths crust. Bulletin Geological Society of America, 72, pp. 175–192, 1961. DOI: 10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2.

[30] Sakan, S.M., Djordjevic, D.S., Manojlovic, D.D. & Polic, P.S., Assessment of heavy metal pollutants accumulation in the Tisza river sediments. Journal of Environmental Management, 90, pp. 3382–3390, 2009. DOI: 10.1016/j.jenvman.2009.05.013.

[31] Piazzolla, D., Scanu, S., Frattarelli, F.M., Mancini, E., Tiralongo, F., Brundo, M.V., Tibullo, D., Pecoraro, R., Copat, C., Ferrante, M. & Marcelli, M., Trace-metal enrichment and pollution in coastal sediments in the northern Tyrrhenian Sea, Italy. Archives of Environmental Contamination and Toxicology, 69(4), pp. 470–481, 2015. DOI: 10.1016/j.marpolbul.2007.09.024.

[32] Wang, C.F., Hsu, M.-H. & Kuo, A.Y., Residence time of the Danshuei River estuary, Taiwan. Estuarine Coastal and Shelf Science, 60, pp. 381–393, 2004. DOI: 10.1016/j.ecss.2004.01.013.

[33] Yuan, D., Lin, B. & Falconer, R.A., A modelling study of residence time in a macrotidal estuary. Estuarine Coastal and Shelf Science, 71, pp. 401–411, 2007. DOI: 10.1016/j.ecss.2006.08.023.