A Novel Approach for the Modelling of Air Quality Dynamics in Underground Railway Stations

A Novel Approach for the Modelling of Air Quality Dynamics in Underground Railway Stations

Edouard Walther Mateusz Bogdan

Arep, France

Page: 
193-201
|
DOI: 
https://doi.org/10.2495/EI-V1-N2-193-201
Received: 
N/A
|
Revised: 
N/A
|
Accepted: 
N/A
|
Available online: 
N/A
| Citation

OPEN ACCESS

Abstract: 

Indoor air quality in subterranean train stations is a concern in many places around the globe. However, because of the specificity of each case, numerous parameters of the problem remain unknown, such as the braking disc particle emission rate, the ventilation rate of the station or the complete particle size distribution of the emitted particles. In this study the problem of modelling PM10 concentration evolution is hence addressed with a particle-mass conservation model which parameters are fitted using a genetic algorithm. The parameters of the model allow to reproduce the dynamics and amplitude of the measured data and comply with realistic bounds in terms of emissions, deposition and ventilation rate.

Keywords: 

conservation model, identification, PM10, underground air quality

  References

[1] Strak, M., et al., Variation in characteristics of ambient particulate matter at eight locations in the Netherlands – The RAPTES project. Atmospheric Environment, 45(26), pp. 4442–4453, 2011. DOI: 10.1016/j.atmosenv.2011.05.035.

[2] Ma, C.J., Matuyama, S., Sera, K. & Kim, S.D., Physicochemical properties of indoor particulate matter collected on subway platforms in Japan. Asian Journal of Atmospheric Environment, 6(2), pp. 73–82, 2012. DOI: 10.5572/ajae.2012.6.2.073.

[3] Park, D., Oh, M., Yoon, Y., Park, E. & Lee, K., Source identification of PM 10 pollution in subway passenger cabins using positive matrix factorization. Atmospheric Environment, 49, pp. 180–185, 2012. DOI: 10.1016/j.atmosenv.2011.11.064.

[4] Gómez-Peralesa, J.E. et al., Bus, minibus, metro inter-comparison of commuters’ exposure to air pollution in Mexico City. Atmospheric Environment, 41(4), pp. 890–901, 2007. DOI : https://doi.org/10.1016/j.atmosenv.2006.07.049

[5] Gustafsson, M., Blomqvist, G., Swietlicky, E. & Dahl, A., Inhalable railroad particles at ground level and subterranean stations – Physical and chemical properties and relation to train traffic. Transportation Research Part D, 17, pp. 277–285, 2012. DOI: 10.1016/j.trd.2011.12.006.

[6] Ke, M.-T., Cheng, T.-C. & Wang, W.-P., Numerical simulation for optimizing the design of subway environmental control system. Building and Environment, 37, pp. 1139–1152, 2002. DOI: 10.1016/S0360-1323(01)00105-6.

[7] Brown, W.G., Basic theory of rapid transit-tunnel ventilation. ASME-IEEE Railroad Conference: 07 April 1965, Pittsburgh, PA., U.S.A., 1965. National Research Council Canada.

[8] Jung, H.-J., et al., Source identification of particulate matter collected at underground subway stations in Seoul, Korea using quantitative single-particle analysis. Atmospheric Environment, 44, pp. 2287–2293, 2010. DOI: 10.1016/j.atmosenv.2010.04.003.

[9] Qiao, T., et al., Preliminary investigation of PM 1, PM 2.5, PM 10 and its metal elemental composition in tunnels at a subway station in Shangai, China. Transportation Research Part D, 41, pp. 136–146, 2015. DOI: 10.1016/j.trd.2015.09.013.

[10] Qian, J., Ferro, A. & Fowler, K., Estimating the resuspension rate and residence time of indoor particles. Air & Waste Management, 58, pp. 502–516, 2008. DOI: http://dx.doi.org/10.3155/1047-3389.58.4.502

[11] Fortain, A., Caractérisation des particules en gares souterraines, Ph.D., 2008. Université de La Rochelle, FRANCE

[12] Kim, S.D., Song, J.H. & Lee, H., Estimation of train-induced wind generated by train operation in subway tunnels. Korean Journal of Air-Conditioning and Refrigeration Engineering, 16, pp. 653–657, 2004. DOI: 10.6110/KJACR.

[13] Moreno, T., et al., Subway platform air quality: Assessing the influences of tunnel ventilation, train piston effect and station design. Atmospheric Environment, 92, pp. 461–468, 2014. DOI: 10.1016/j.atmosenv.2014.04.043.

[14] Nazaroff, W., Indoor air dynamics. Indoor Air, Vol. 14, S 7, pp. 175–183, 2004. Wiley Online Library. DOI: 10.1111/j.1600-0668.2004.00286.x.

[15] Riley, W.J., McKone, T.M., Lai, A.C.K. & Nazaroff, W.W., Indoor particulate matter of outdoor origin: Importance of size-dependant removal mechanisms. Environmental Science & Technology, 36(2), pp. 200–207, 2002. DOI: 10.1021/es010723y.

[16] Querol, X., et al., Variability of levels and composition of PM 10 and PM 2.5 in the Barcelona Metro system. Atmospheric Chemistry and Physics, 12, pp. 5055–5076, 2012. DOI: 10.5194/acp-12-5055-2012-supplement.

[17] Salma, I., Weidinger, T. & Maenhaut, W., Time-resolved mass concentration, composition and sources of aerosol particles in a metropolitan underground railway station. Atmospheric Environment, 41, pp. 8391–8405, 2007. DOI: 10.1016/j.atmosenv.2007.06.017.

[18] Song, J., Pokhrel, R., Lee, H. & Kim, S.-D., Box model approach for Indoor Air Quality (IAQ) management in a subway station environment. Asian Journal of Atmospheric Environment, 8(4), pp. 184–191, 2014. DOI: 10.5572/ajae.2014.8.4.184.

[19] Pan, S., et al., A review of the piston effect in subway stations. Advances in Mechanical Engineering, Vol. 5, 2013. DOI: http://dx.doi.org/10.1155/2013/950205.

[20] Airparif, available at http://www.airparif.asso.fr/telechargement/telechargement-statistique, 2005. Accessed on August 2016.

[21] Nazaroff, W.W., Ligocki, M.P., Ma, T. & Cass, G.R. Particle deposition in museums: Comparison of modeling and measurement results. Aerosol Science and Technology, 13(3), pp. 332–348, 1990. DOI: 10.1017/S0022112080001905.

[22] Martins, V., et al., Exposure to airborne particulate matter in the subway system. Science of the Total Environment, 511, pp. 711–722, 2015. DOI: 10.1016/j.scitotenv.2014.12.013

[23] Wieghardt, K., Belüftungsprobleme in U-Bahn-und Autotunnels. Schiffstechnik, 9(49), pp. 209–216, 1962. DOI: 10.15480/882.567

[24] Crump, J.G. & Seinfield, J.H. Turbulent deposition and gravitational sedimentation of an aerosol in a vessel of arbitrary shape. Journal of Aerosol Science, 12(5), pp. 405–415, 1981. DOI: 10.1016/0021-8502(81)90036-7.

[25] Park, S.H. & Lee, K.W., Method for aerosol deposition. Journal of Aerosol Science, 31(1), pp. 845–846, 2000. DOI: 10.1016/S0021-8502(00)90855-3.

[26] Thatcher, T.L. & Layton, D.W., Deposition, resuspension and penetration of particles within a residence. Atmospheric Environment, 29(13), pp. 1487–1497, 1995. DOI: 10.1016/1352-2310(95)00016-R.

[27] Lai, A.C.K. & Nazaroff, W.W., Modeling indoor particle deposition from turbulent flow onto smooth surfaces. Journal of Aerosol Science, 31(4), pp. 463–476, 2000. DOI: https://doi.org/10.1016/S0021-8502(99)00536-4.

[28] Park, S.H. & Lai, K.W., Analytical solution to change in size distribution of polydisperse particles in closed chamber due to diffusion and sedimentation. Atmospheric Environment, 36, pp. 5459–5467, 2002. DOI: 10.1016/S1352-2310(02)00673-8.

[29] Marquardt, D.W., An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics, 11(2), pp. 431–441, 1963. http://dx.doi.org/10.1137/0111030. DOI: 10.1137/0111030.

[30] Mitchell, M., An Introduction to Genetic Algorithms, MIT Press: London, England, 1998.

[31] Nazaroff, W.W., et al., Airborne Particles in Museums/Research in Conservation, 1992. Getty Conservation Institute: California, United States, 1993.