Modeling of Stent Expansion Dynamics and Resultant Arterial Wall and Lesion Stresses in a Stenosed Artery

Modeling of Stent Expansion Dynamics and Resultant Arterial Wall and Lesion Stresses in a Stenosed Artery

M.R. Hyre S.A. Chae R.M. Pulliam 

Department of Mathematics and Engineering, Northwestern College, Orange City, IA, U.S.A

Department of Mechanical Engineering, Villanova University, Villanova, PA, U.S.A

| |
| | Citation



Restenosis remains a signifi cant problem in coronary intervention. Additionally, concerns have recently been raised that drug eluting stents (DES) are linked to long-term thrombosis. For carotid artery stenting, the most serious complication is ipsilateral neurologic events due to an acute embolus from fragmentation of the lesion during stent deployment.

While much attention has focused on biocompatibility solutions to these problems, less attention has been given to matching stents to the infl ation balloon, atherosclerotic plaque mechanical properties, and lesion shape. Results show that the risk of arterial damage or plaque fractures is dependent on plaque morphology and material properties. Computational modeling results also indicate that it may be possible to use numerical simulations to estimate stress distributions in atherosclerotic lesions in vivo during and after stent deployment. This may help provide clinical indicators in stenting to reduce vascular injury and plaque rupture, which can cause acute and long-term post-procedural lumen loss in coronary artery stenting or stroke in carotid artery stenting.

Results also indicate that while a complex model for plaque morphology is necessary to determine the stress distribution within the lesion, a more simple homogeneous plaque model will allow for reasonably accurate predictions of arterial stresses.


 Finite element analysis, plaque, restenosis, stent, vascular injury


[1] Weintraub, W.S., The pathophysiology and burden of restenosis. American Journal of Cardiology,100, pp. 3K–9K, 2007. doi: 

[2] Antoniucci, D., Valenti, R., Santoro, G., Bolognese, L., Trapani, M., Cerisano, G. & Fazzini, P. Restenosis after coronary stenting in current clinical practice. American Heart Journal, 135(3), 

pp. 510–518, 1998. doi:

[3] Forrester, J.S., Toward understanding the evolution of plaque rupture: correlating vascular pathology with clinical outcomes. Journal of the American College of Cardiology, 42, 

pp. 1566–1568, 2003. doi:

[4] Nakazawa, G., Finn, A.V., Joner, M., Ladich, E., Kutys, R., Mont, E.K., Gold, H.K., Burke, A.P., Kolodgie, F.D. & Vermani, R., Delayed arterial healing and increased late stent thrombosis at culprit sites after drug-eluting stent placement for acute myocardial infarction patients: an autopsy study. Circulation, 118, pp. 1138–1145, 2008. doi: CIRCULATIONAHA.107.762047

[5] Joner, M., Finn, A.V., Farb, A., Mont, E.E., Kolodgie, F.D., Ladich, E., Kutys, R., Skorija, K., Gold, H.K. & Virmani, R., Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. Journal of the American College of Cardiology, 48, pp. 193–202, 2006. doi:

[6] Takano, M., Takayoshi, O., Inami, S., Seimiya, K., Sakai, S. & Mizuno, K., Angioscopic differences in neointimal coverage and in persistence of thrombus between sirolimus-eluting stents and bare metal stents after a 6-month implantation. European Heart Journal, 27, 

pp. 2189–2195, 2006. doi:

[7] Waxman, S., Freilich, M.I., Suter, M.J., Shishkov, M., Bilazarian, S., Virmani, R., Bouma, B.E. & Tearney, G.J., A Case of lipid core plaque progression and rupture at the edge of a coronary stent: elucidating the mechanisms of drug-eluting stent failure. Circulation: Cardiovascular Interventions,3, pp. 193–196, 2010. doi: 109.917955

[8] Daemen, J., Wenaweser, P., Tsuchida, K., Abrecht, L., Vaina, S., Morger, C., Kukreja, N., Juni, 

P., Sianos, G., Hellige, G., van Dombrug, R.T., Hess, O.M., Boersma, E., Meier, B., Windecker, S. & Serruys, P.W., Early and late coronary stent thrombosis of sirolimus-eluting and paclitaxeleluting stents in routine clinical practice: data from a large two-institutional cohort study. Lancet, 369, pp. 667–678, 2007. doi:

[9] Lagerqvist, B., James, S.K., Stenestrand, U., Lindback, J., Nilsson, T. & Wallentin, L., Longterm outcomes with drug-eluting stents versus bare-metal stents in Sweden. The New England Journal of Medicine, 356, pp. 1009–1019, 2007. doi:

[10] Stone, G.W., Moses, J.W., Ellis, S.G., Schofer, J., Dawkins, K.D., Morice, M.C., Colombo, 

A., Schampaert, E., Grube, E., Kiertane, A.J., Cutlip, D.E., Fahy, M., Pocock, S.J., Mehran, R. & Leon, M.B., Safety and effi cacy of sirolimus- and paclitaxel-eluting coronary stents. The 

New England Journal of Medicine, 356, pp. 998–1008, 2007. doi: NEJMoa067193

[11] Sianos, G., Papafaklis, M.I., Daemen, J., Vaina, S., van Mieghem, C.A., van Domburg, R.T., Michalis, L.K. & Serruys, P.W., Angiographic stent thrombosis after routine use of drug-eluting stents in ST-segment elevation myocardial infarction: the importance of thrombus burden. 

Journal of the American College of Cardiology, 50, pp. 573–583, 2007. doi:


[12] Stankovic, G. Liistro, F., Moshiri, S., Briquori, C., Corvaja, N., Gimelli, G., Chieffo, A., Montorfano, M., Finci, L, Spanos, V., Di Mario, C. & Colombo, A., Carotid artery stenting in the fi rst 100 consecutive patients: results and follow up. Heart, 88, pp. 381–386, 2002. doi:

[13] CAVATS Investigators. Endovascular versus surgical treatment in patients with carotid stenosis in the carotid and vertebral artery transluminal angioplasty study (CAVATAS): a randomized trial. Lancet, 357, pp. 1729–1737, 2001. doi: 04893-5

[14] Dietz, A., Berkefeld, J., Theron, J.G., Schmitz-Rixen, T., Zanella, F.E., Turowski, B., Steinmetz, H. & Sitzer, M., Endovascular treatment of symptomatic carotid stenosis using stent placement: long-term follow-up of patients with a balanced surgical risk/benefi t ratio. Stroke, 32, 1855–1859, 2001. doi:

[15] Phatouros, C.C., Higashida, R.T., Malek, A.M., Meyers, P.M., Lempert, T.E., Dowd, C.F. & Halbach, W., Carotid artery stent placement for atherosclerotic disease: rationale, technique, and current status. Radiology, 217, pp. 26–41, 2000. doi:


[16] van der Vaart, M.G., Meerwaldt, R., Reijnen, M.M., Tio, R.A. & Zeebreqts, C.J., Endarterectomy or carotid artery stenting:the quest continues. The American Journal of Surgery, 195, pp. 259–269, 2008. doi:

[17] Kastrup, A., Schulz, J.B., Raygrotzki, S. Groschel, K. & Ernemann, U., Comparison of angioplasty and stenting with cerebral protection versus endarterectomy for treatment of internal carotid artery stenosis in elderly patients. Journal of Vascular Surgery, 40, pp. 945–951, 2004. 


[18] Hyre, M.R., Squire, J.C. & Pulliam, R.M., Effects of balloon overhang on stented arteries. 2007 Conference on Modeling in Biology and Medicine, New Forest, England, September 10–12, 2007.

[19] Auricchio, F., Di Loreto, M. & Sacco, E., Finite element analysis of a stenotic artery revascularization through stent insertion. Computer Methods in Biomechanics and Biomedical Engineering, 4, pp. 249–263, 2001. doi:

[20] Migliavacca, F., Petrini, L., Colombo, M., Auricchio, F. & Pietrabissa, R., Mechanical behavior of coronary stents investigated through the fi nite element method. Journal of Biomechanics, 35, pp. 803–811, 2002. doi:

[21] Petrini, L., Migliavacca, F., Dubini, G. & Auricchio, F., Evaluation of intravascular stent fl exibility by means of numerical analysis. Proceedings of the 2003 Summer Bioengineering Conference, Key Biscayne, FL, June 25–29, pp. 251–252, 2003.

[22] Lally, C., Dolan, F. & Prendergast, P.J., Cardiovascular stent design and vessel stresses: a fi nite element analysis. Journal of Biomechanics, 38, pp. 1574-1581, 2005. doi:


[23] Pericevic, I., Lally, C., Toner, D. & Kelly, D.J., The infl uence of plaque composition on underlying arterial wall stress during stent expansion: the case for lesion-specifi c stents. Medical Engineering & Physics, 31, pp. 428–433, 2009. doi: medengphy.2008.11.005

[24] Hyre, M.R., Pulliam, R.M. & Squire, J.C., Modeling stent expansion dynamics and blood fl ow patterns in a stenotic artery. Modelling in Medicine and Biology, ed. C.A. Brebbia, WIT Press: Southampton, UK, pp. 115–129, 2011.

[25] Yang, C., Tang, D., Yuan, C., Hatsukami, Zheng, J. & Woodard, P.K., In vivo/ex vivo MRIbased 3D non-Newtonian FSI models for human atherosclerotic plaques compared with fl uid/ wall-only models. Computer Modeling in Engineering and Sciences, 19, pp. 233–246, 2007.

[26] Yang, C., Tang, D., Kobayashi, S., Zheng, J., Woddard, P., Teng, Z., Bach, R. & Ku, D.N., Cyclic bending contributes to high stress in a human coronary atherosclerotic plaque and rupture risk. Molecular & Cellular Biomechanics, 5, pp. 259–274, 2008.

[27] Tang, D., Yang, C., Zheng, J., Woodard, P.K., Saffi tz, J.E., Petruccelli, J.D., Sicard, G.A. & Yuan, C., Local maximal stress hypothesis and computational plaque vulnerability index for atherosclerotic plaque assessment. Annals of Biomedical Engineering, 33, pp. 1789–1801, 2005. doi:

[28] Tang, D., Yang, C., Zheng, J., Woodard, P.K., Saffi tz, J.E., Sicard, G.A., Pilgram, T.K. & Yuan, C., Quantifying effects of plaque structure and material properties on stress distributions in human atherosclerotic plaques using 3D FSI models. Journal of Biomechanical Engineering, 127, pp. 1185–1194, 2005. doi:

[29] Tang, D., Yang, C., Kobayashi, S., Zheng, J., Woodard, P.K., Teng, Z., Billiar, K., Bach, R. & Ku, D.N., 3D MRI-based anisotropic FSI models with cyclic bending for human coronary atherosclerotic plaque mechanical analysis. Journal of Biomechanical Engineering, 131, pp. 061010, 2009 [Pubmed: 19449964]. doi:

[30] Holzapfel, G.A., Sommer, G. & Regitnig, P., Anisotriopic mechanical properties of tissue components in human atherosclerotic plaques. Journal of Biomechanical Engineering, 126, pp. 657–665, 2004. doi:

[31] Rogers, W.J., Prichard, J.W., Hu, Y.L., Olson, P.R., Benckart, D.H., Kramer, C.M., Vido, D.A. & Reichek, N., Characterization of signal properties in atherosclerotic plaque components by intravascular MRI. Arteriosclerosis, Thrombosis, and Vascular Biology, 20, pp. 1824–1830, 2000. doi:

[32] Lally, C. & Prendergast, P.J., An investigation into the applicability of a Mooney–Rivlin constitutive equation for modeling vascular tissue in cardiovascular stenting procedures. Proceedings of the International Congress on Computational Biomechanics, Zaragoza, Spain, pp. 542–550, 2003.

[33] Loree, H.M., Grodzinsky, A.J., Park, S.Y., Gibson, L.J. & Lee, R.T., Static circumferential tangential modulus of human atherosclerotic tissue. Journal of Biomechanics, 27, pp. 195–204, 1994. doi:

[34] Williamson, S.D., Lam, Y., Younis, H.F., Huang, H., Patel, S., Kaazempur-Mofrad, M.R. & Kamm, R.D., On the sensitivity of wall stresses in diseased arteries to variable material properties. Journal of Biomechanical Engineering, 125, pp. 147–155, 2003. doi: http://dx.doi. org/10.1115/1.1537736

[35] Lendon, C.L., Davies, M.J., Born, G.V. & Richardson, P.D., Atherosclerotic plaque caps are locally weakened when macrophages density is increased. Atherosclerosis, 87, pp. 87–90, 1991. doi:

[36] Cheng, G.C., Loree, H.M., Kamm, R.D., Fishbein, M.C. & Lee, R.T., Distribution of circumferential stress in ruptured and stable atherosclerotic lesions: a structural analysis with histopathological correlation. Circulation, 87, pp. 1179–1187, 1993. doi: http://dx.doi. org/10.1161/01.CIR.87.4.1179