Maritime Antarctic Lakes As Sentinels of Climate Change

Maritime Antarctic Lakes As Sentinels of Climate Change

A. Camacho C. Rochera J.A. Villaescusa D. VelÁzquez M. Toro E. Rico E. Fernandez- Valiente A. Justel M. BaÑon A. Quesada

Cavanilles Institute for Biodiversity and Evolutionary Biology, University of Valencia, Spain.

Department of Biology, Universidad Autónoma de Madrid, Spain.

Centro de Estudios Hidrográfi cos del CEDEX, Spain.

Department of Ecology, Universidad Autónoma de Madrid, Spain.

Department of Mathematics, Universidad Autónoma de Madrid, Spain.

Agencia Estatal de Meteorologıa, Spain.

Page: 
239-250
|
DOI: 
https://doi.org/10.2495/DNE-V7-N3-239-250
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

Remote lakes, such as lakes from the Maritime Antarctica, can be used as sentinels of climate change, because they are mostly free of direct anthropogenic pressures, and they experience climate change as a main stressor capable of modifying the ecosystem structure and function. In this paper, the content of a lecture that has been presented at the First Conference of Lake Sustainability, which has been centred in our studies on lakes from Byers Peninsula (Maritime Antarctica), are summarized. These included physical, chemical and biological studies of these lakes and other freshwater ecosystems, which highlighted the relevance of biotic interactions for these ecosystems and its sensibility to temperature variations and to biological invasions, which is of relevance given the acute regional warming occurring during the last decades in the area, concomitant with the enhancement of dispersion of alien species linked to the increased presence of humans.

Keywords: 

Biological invasions, climate change, ecosystem modelling, environmental prognoses, Maritime Antarctica, regional warming, remote lakes, sensor systems, simple food webs, species interactions

  References

[1] Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M. & Miller H.L., (eds.). Climate change: the physical science basis. Contribution of Working Group I to the 4th Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press, 2007.

[2] MacKay, M.D., Neale, P.J., Arp, C.D., De Senerpont Domis, L.N., Fang, X., Gal, G., Johnk, 

K.D., Kirillin, G., Lenters, J.D., Litchman, E., MacIntyre, S., Marsh, P., Melack, J., Mooij, W.M., Peeters, F., Quesada, A., Schladow, S.G., Schmid, M., Spence, C. & Stokes, S.L., Modeling lakes and reservoirs in the climate system. Limnology and Oceanography, 54(6), pp. 2315–2329, 2009. doi: http://dx.doi.org/10.4319/lo.2009.54.6_part_2.2315

[3] Williamson, C.E., Saros, J.E., Vincent, W.F. & Smol, J.P. Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnology and Oceanography, 54(6), pp. 2273–

2282, 2009. doi: http://dx.doi.org/10.4319/lo.2009.54.6_part_2.2273

[4] Adrian, R., O'Reilly, C.M., Zagarese, H., Baines, S.B., Hessen, D.O., Keller, W., Livingstone, 

D.M., Sommaruga, R., Straile, D., Van Donk, E., Weyhenmeyer, G.A. & Winder M., Lakes as sentinels of climate change. Limnology and Oceanography, 54(6), pp. 2283–2297, 2009. doi: http://dx.doi.org/10.4319/lo.2009.54.6_part_2.2283

[5] Catalan, J., Camarero, L., Felip, M., Pla, S., Ventura, M., Buchaca, T., Bartumeus, F., de Mendoza, G., Miro, A., Casamayor, E.O., Medina-Sanchez, J.M., Bacardit, M., Altuna, M.,  Bartrons, M. & Diaz de Quijano, D., High mountain lakes: extreme habitats and witnesses of environmental change. Limnetica, 25(1–2), pp. 551–584, 2006.

[6] Battarbee, R.W., Mountain lakes, pristine or polluted? Limnetica, 24(1–2), pp. 1–8, 2005.

[7] Mladenov, N., Sommaruga, R., Morales-Baquero, R., Laurion, I., Camarero, L., Dieguez, M.C., Camacho, A., Delgado, A, Torres, O., Chen, Z. & Reche, I., Dust inputs and bacteria infl uence dissolved organic matter in clear alpine lakes. Nature Communications, 2, 405 

doi:10.1038/comms1411, 2011. doi: http://dx.doi.org/10.1038/comms1411

[8] Mueller, D.R., Van Hove, P., Antoniades, D., Jeffries, M.O. & Vincent, W.F., High Arctic lakes as sentinel ecosystems: Cascading regime shifts in climate, ice cover, and mixing. Limnology and Oceanography, 54(6), pp. 2371–2385, 2009. doi: http://dx.doi.org/10.4319/lo.2009.54.6_part_2.2371

[9] Agusti, S., Sejr, M.K. & Duarte, C.M., Impacts of climate warming on polar marine and freshwater ecosystems. Polar Biology, 33(12), pp. 1595–1598, 2010. doi: http://dx.doi.org/10.1007/ s00300-010-0955-0

[10] Camacho., A., Planktonic microbial assemblages and the potential effects of metazooplankton predation on the food web of lakes from the Maritime Antarctica and sub-Antarctic islands. Reviews on Environmental Science and Biotechnology, 5, pp. 167–185, 2006. doi: http://dx.doi. org/10.1007/s11157-006-0003-2

[11] Toro, M., Camacho, A., Rochera, C., Rico, E., Banon, M., Fernandez-Valiente, E., Marco, E., Justel, A., Vincent, W.F., Avendano, M.C., Ariosa, Y. & Quesada, A., Limnological characteristics of the freshwater ecosystems of Byers Peninsula, Livingston Island, in Maritime  Antarctica. Polar Biology, 30(5), pp. 635–649, 2007. doi: http://dx.doi.org/10.1007/s00300006-0223-5

[12] Quayle, W.C, Peck, L.S., Peat, H., Ellis-Evans, J.C. & Harrigan, P.R., Extreme responses to climate change in Antarctic lakes. Science, 295, p. 645. 2002. doi: http://dx.doi.org/10.1126/ science.1064074

[13] Hansson, L.-A. & Tranvik, L., Quantifi cation of invertebrate predation and herbivory in food webs of low complexity. Oecologia, 108(3), pp. 542–551, 1996. doi: http://dx.doi.org/10.1007/ BF00333732

[14] Butler, H., Atkinson, A. & Gordon, M., Omnivory and predation impact of the calanoid copepod Boeckella poppei in a Maritime Antarctic lake. Polar Biology, 28(11), pp. 815–821, 2005. doi: http://dx.doi.org/10.1007/s00300-005-0014-4

[15] Laybourn-Parry J., Ellis-Evans, J.C. & Butler, H., Microbial dynamics during the summer iceloss phase in maritime Antarctic lakes. Journal of Plankton Research, 18(4), pp. 495–511, 1996. doi: http://dx.doi.org/10.1093/plankt/18.4.495

[16] Almada, P., Allende L., Tell G. & Izaguirre I., Experimental evidence of the grazing impact of Boeckella poppei on phytoplankton in a maritime Antarctic lake. Polar Biology, 28(1), pp. 39–46, 2004

[17] Quesada, A., Camacho, A., Rochera, C. & Velazquez, D., Byers Peninsula: A reference site for coastal, terrestrial and limnetic ecosystem studies in maritime Antarctica. Polar Science, 3(3), 181–187, 2009. doi: http://dx.doi.org/10.1016/j.polar.2009.05.003

[18] Villaescusa, J.A., Casamayor, E.O., Rochera, C., Velazquez, D., Chicote, A., Quesada, A. & Camacho, A., A close link between bacterial community composition and environmental heterogeneity in maritime Antarctic lakes. International Microbiology, 13(2), 67–77, 2010.

[19] Rochera, C., Justel, A., Fernandez-Valiente, E., Banon, M., Rico, E., Toro, M., Camacho, A. & Quesada, A., Interannual meteorological variability and its effects on a lake from maritime Antarctica. Polar Biology, 33(12), pp. 1615–1628, 2010. doi: http://dx.doi.org/10.1007/ s00300-010-0879-8

[20] Bjorck, S., Olsson, S., Ellis-Evans, C., Hakansson, H., Humlum, O. & De Lirio, J.M., Late Holocene palaeoclimatic records from lake sediments on James Ross Island, Antarctica.  Palaeogeography, Palaeoclimatology, Palaeoecology, 121(3–4), pp.195–220, 1996. doi: http:// dx.doi.org/10.1016/0031-0182(95)00086-0

[21] Spigel, R.H. & Priscu, J.C., Physical limnology of the McMurdo Dry Valley lakes (Chapter 3). Ecosystem dynamics in a Polar Desert: the McMurdo Dry Valleys, Antarctica, ed. J.C. Priscu, American Geophysical Union, Washington DC, pp 153–189, 1998.

[22] Lopez-Bueno, A., Tamames, J., Velazquez, D., Moya, A., Quesada, A. & Alcami, A., High diversity of the viral community from an Antarctic lake. Science, 326, pp. 858–861, 2009. doi: http://dx.doi.org/10.1126/science.1179287

[23] Fernandez-Valiente, E., Camacho, A., Rochera, C., Rico, E., Vincent, W.F. & Quesada, A., Community structure and physiological characterization of microbial mats in Byers Peninsula, Livingston Island (South Shetland Islands, Antarctica). FEMS Microbiology Ecology, 59(2), 377–385, 2007. doi: http://dx.doi.org/10.1111/j.1574-6941.2006.00221.x

[24] Velazquez, D., Rochera, C., Camacho, A. & Quesada, A., Temperature effects on carbon and nitrogen metabolism in some Maritime Antarctic freshwater phototrophic communities. Polar Biology, 34(7), pp. 1045–1055, 2011. doi: http://dx.doi.org/10.1007/s00300-011-0964-7

[25] Villaescusa, J.A., Jørgensen, S.E., Rochera, C., Velazquez, D., Quesada, A. & Camacho, A., Carbon fl ow modelization of the microbial planktonic foodweb in an oligotrophic freshwater Antarctic lake. Submitted to Ecological Modeling.

[26] Frenot, Y., Chown, S.L., Whinam, J., Selkirk, P.M., Convey, P., Skotnici, M. & Bergstrom, D.M., Biological invasions in the Antarctic: Extent, impacts and implications. Biological  Reviews, 80(1), pp. 45–72, 2005. doi: http://dx.doi.org/10.1017/S1464793104006542

[27] Ellis-Evans, J.C. & Walton, D., The process of colonization in Antarctic terrestrial and freshwater ecosystems. Proceedings of the National Institute of Polar Research Symposium on  Polar Biology, 3, pp. 151–163, 1990.