On the Role and Impact of Electromagnetic Fields in Ecosystems

On the Role and Impact of Electromagnetic Fields in Ecosystems

L. Brizhik 

Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine

Page: 
272-281
|
DOI: 
https://doi.org/10.2495/DNE-V6-N4-272-281
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

Role and effects of electromagnetic fi eld in living organisms and ecosystems are discussed within a nonlinear mechanism of charge transport processes that take place during respiration and photosynthesis, as well as in hydrogen-bonded chains of water molecules. Such mechanism is based on the account of the interaction between charges and induced by the distortions of macromolecules or water chains, which results in the self-trapping of charges in soliton states. It is shown that electrosolitons have some characteristic frequency, with respect to which periodic electromagnetic fi elds have resonant effect on their dynamics and stability. At certain conditions unbiased (with zero mean-value) periodic electromagnetic radiation can cause drift of solitons along molecular chains, and, therefore, affect charge transport processes. Such drift of particles in unbiased fi elds is known as ratchet phenomenon. Similar dynamics can be caused by stochastic fi elds and takes place in water chains present in interfacial water in cells, in coherence domains of water in the atmosphere and oceans. These results can explain the mechanism of impact of the electromagnetic solar activity on metabolism of living organisms and functioning of ecosystems. Moreover, it provides the mechanism for the formation of ecosystems via fi eld-mediated exchange of information between the ecosystem elements and existence of the hierarchy of ecosystems. This study also indicates a possible danger of the electromagnetic smog on ecosystems.

Keywords: 

charge transport, coherence, ecosystems, electromagnetic fi eld, electromagnetic smog, radiation, ratchet phenomenon, soliton, water.

  References

[1] Lehninger, A.L., Biochemistry, Worth Publishers Inc.: New York, 1972.

[2] Davydov, A.S., Solitons in Molecular Systems, 2nd edn, Reidel: Dordrecht, 1985.

[3] Dauxois, T. & Peyrard, M., Physics of Solitons, Cambridge University Press: Cambridge, 2006.

[4] Antonchenko, V.Ya., Davydov, A.S. & Zolotaryuk, A.V., Solitons and proton motion in ice-like structures. Physica Status Solidi B, 115, pp. 945–952, 1983. doi:http://dx.doi.org/10.1002/ pssb.2221150234

[5] Pollack, G.H., Cells, Gels and Engines of Life, Ebner & Sons: USA, 2001.

[6] Voeikov, V.L., Fundamental role of water in bioenergetics. Biophotonics and Coherent Systems in Biology, eds L.V. Beloussov, V.L. Voeikov & V.S. Martynyuk, Springer: New York, pp. 89–98, 2007.

[7] Huang, C., The inhomogenous structure of water at ambient conditions. PNAS, 106, pp. 15214–15218, 2009. doi:http://dx.doi.org/10.1073/pnas.0904743106

[8] Del Giudice, E., Spinetti, P.R. & Tedeschi, A., Water dynamics at the roots of the metamorpho-sis in living organisms. Water, 2, 2010; doi:http://dx.doi.org/10.3390/w20x000x.

[9] Preparata, G., QED Coherence in Matter, World Scientifi c: New Jersey, 1995. doi:http://dx.doi.

org/10.1142/9789812830999

[10] Del Giudice, E., De Ninno, A., Fleischmann, M., Mengoli, G., Milani, M., Talpo, G. & Vitiello, G. Coherent quantum electrodynamics in living matter. Electromagnetic Biology and Medicine, 25, pp. 522–530, 2006.

[11] Brizhik, L., Cruzeiro-Hansson, L. & Eremko, A., Infl uence of electromagnetic radiation on molecular solitons. Journal of Biological Physics, 24, pp. 19–39, 1998. doi:http://dx.doi. org/10.1023/A:1005096714234

[12] Brizhik, L., Cruzeiro-Hansson, L., Eremko, A. & Olkhovska Yu., Soliton dynamics and P eierls-Nabarro barrier in a discrete molecular chain. Physical Review B, 61, pp. 1129–1141, 

2000. doi:http://dx.doi.org/10.1103/PhysRevB.61.1129

[13] Brizhik, L.S. & Eremko, A.A., Nonlinear model of the origin of endogenous alternating electromagnetic fi elds and selfregulation of metabolic processes in biosystems. Electromagnetic Biology and Medicine, 22, pp. 31–39, 2003. doi:http://dx.doi.org/10.1081/JBC-120020351

[14] Scott, AC., Davydov’s soliton. Physics Reports, 217, pp. 1–67, 1992. doi:http://dx.doi. org/10.1016/0370-1573(92)90093-F

[15] Pohl, H.A., Oscillating fi elds about growing cells. International Journal of Quantum Chemistry. Quantum Biology Symposium, 7, pp. 411–431, 1980.

[16] Pokorný, J., Hašek, J. & Jelínek, F., Endogenous electric fi eld and organization of living matter. Electromagnetic Biology and Medicine, 24, pp. 185–197, 2005. doi:http://dx.doi. org/10.1080/15368370500379566

[17] Montagnier, L., et al., Electromagnetic signals are produced by aqueous nanostructures derived from bacterial DNA sequences. Interdisciplinary Sciences: Computational Life  Sciences, 1, pp. 81–90. 2009.

[18] Cifra, M., Fields, J.Z. & Farhadi, A., Electromagnetic cellular interactions. Progress in Biophysics and Molecular Biology, pp. 1–24, 2010. doi:http://dx.doi.org/10.1016/ j- pbiomolbio.2010.07.003

[19] Brizhik, L., Del Giudice, E., Jorgensen, S.E., Marchettini, N. & Tiezzi, E., The role of electromagnetic potentials in the evolutionary dynamics of ecosystems. Ecological Modelling, 220, pp. 1865–1869, 2009. doi:http://dx.doi.org/10.1016/j.ecolmodel.2009.04.017

[20] Tiezzi, E., Steps Toward an Evolutionary Physics, WIT Press: Billerica, MA, 2005.

[21] Aharonov, Y. & Böhm, D., Signifi cance of electromagnetic potentials in quantum theory. Physics Review, 115, pp. 485–491, 1959. doi:http://dx.doi.org/10.1103/PhysRev.115.485

[22] Aharonov, Y. & Böhm, D., Further considerations on electromagnetic potentials in the quantum theory. Physics Review, 123, pp. 1511–1524, 1961. doi:http://dx.doi.org/10.1103/ PhysRev.123.1511

[23] Prigogine, I. & Nicolis, G., Self-Organisation in Non-Equilibrium System, From Dissipative Structures to Order Through Fluctuations, Wiley: New York, 1977.

[24] Reinmann, P., Physics Reports, 361, pp. 57–121, 2002. doi:http://dx.doi.org/10.1016/ S0370-1573(01)00081-3

[25] Brizhik, L., Eremko, A., Piette, B. & Zakrzewski, W., Ratchet dynamics of large polarons in asymmetric diatomic molecular chains. Journal of Physics: Condensed Matter, 22, 

155105, 2010; http://stacks.iop.org/0953-8984/22/155105. doi:http://dx.doi.org/10.1088/ 0953-8984/22/15/155105

[26] Luczka, J., Bartussek, R. & Hänggi, P., Europhysics Letter., 31, pp. 431–435, 1995. doi:http:// dx.doi.org/10.1209/0295-5075/31/8/002

[27] Luczka, J., Chernik, T. & Hänggi, P., Physics Review E, 56, pp. 3968–3974, 1997. doi:http:// dx.doi.org/10.1103/PhysRevE.56.3968